File size: 4,365 Bytes
ac637be
 
 
 
de0c06e
 
ac637be
 
 
de0c06e
 
ac637be
 
 
 
 
 
 
 
 
 
 
de0c06e
ac637be
29be7a4
 
 
 
 
 
 
 
 
ac637be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29be7a4
 
 
 
 
 
 
 
 
 
 
 
ac637be
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: apache-2.0
library_name: peft
tags:
- alignment-handbook
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: zephyr-7b-dpo-qlora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-7b-dpo-qlora

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6668
- Rewards/chosen: -0.2672
- Rewards/rejected: -0.3491
- Rewards/accuracies: 0.6137
- Rewards/margins: 0.0819
- Logps/rejected: -378.9569
- Logps/chosen: -361.0521
- Logits/rejected: -2.5949
- Logits/chosen: -2.5884

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6933        | 0.08  | 100  | 0.6930          | -0.0077        | -0.0080          | 0.5177             | 0.0004          | -344.8478      | -335.0984    | -2.4838         | -2.4768       |
| 0.6926        | 0.16  | 200  | 0.6923          | -0.0138        | -0.0155          | 0.5427             | 0.0017          | -345.5920      | -335.7114    | -2.4836         | -2.4766       |
| 0.6906        | 0.24  | 300  | 0.6917          | -0.0130        | -0.0161          | 0.5523             | 0.0031          | -345.6560      | -335.6324    | -2.4879         | -2.4809       |
| 0.6884        | 0.32  | 400  | 0.6898          | -0.0075        | -0.0146          | 0.5807             | 0.0071          | -345.4990      | -335.0794    | -2.4972         | -2.4901       |
| 0.6753        | 0.4   | 500  | 0.6856          | -0.1385        | -0.1579          | 0.5630             | 0.0194          | -359.8317      | -348.1783    | -2.4986         | -2.4916       |
| 0.6839        | 0.48  | 600  | 0.6815          | -0.3188        | -0.3556          | 0.5667             | 0.0368          | -379.6049      | -366.2155    | -2.5394         | -2.5333       |
| 0.6535        | 0.56  | 700  | 0.6770          | -0.4204        | -0.4741          | 0.5763             | 0.0537          | -391.4496      | -376.3719    | -2.5483         | -2.5425       |
| 0.6764        | 0.64  | 800  | 0.6724          | -0.2481        | -0.3087          | 0.5990             | 0.0606          | -374.9128      | -359.1413    | -2.5714         | -2.5651       |
| 0.6753        | 0.72  | 900  | 0.6704          | -0.4283        | -0.5062          | 0.5983             | 0.0780          | -394.6671      | -377.1592    | -2.5807         | -2.5750       |
| 0.6459        | 0.8   | 1000 | 0.6680          | -0.2406        | -0.3163          | 0.6127             | 0.0757          | -375.6733      | -358.3894    | -2.5924         | -2.5858       |
| 0.6541        | 0.88  | 1100 | 0.6670          | -0.2806        | -0.3625          | 0.6157             | 0.0820          | -380.2968      | -362.3882    | -2.5942         | -2.5878       |
| 0.6422        | 0.96  | 1200 | 0.6669          | -0.2657        | -0.3473          | 0.6157             | 0.0817          | -378.7738      | -360.8972    | -2.5963         | -2.5898       |


### Framework versions

- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2
- Datasets 2.14.6
- Tokenizers 0.15.0