shenzhi-wang
commited on
Commit
β’
404a735
1
Parent(s):
fc889e8
Update README.md
Browse files
README.md
CHANGED
@@ -20,7 +20,7 @@ tags:
|
|
20 |
|
21 |
# Updates
|
22 |
|
23 |
-
- πππ [July 24, 2024] We now introduce [shenzhi-wang/Llama3.1-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3.1-8B-Chinese-Chat)!
|
24 |
- π₯ We provide the official **q4_k_m, q8_0, and f16 GGUF** versions of Llama3.1-8B-Chinese-Chat-**v2.1** at https://huggingface.co/shenzhi-wang/Llama3.1-8B-Chinese-Chat/tree/main/gguf!
|
25 |
|
26 |
|
@@ -39,8 +39,6 @@ Developers: [Shenzhi Wang](https://shenzhi-wang.netlify.app)\*, [Yaowei Zheng](h
|
|
39 |
|
40 |
This is the first model specifically fine-tuned for Chinese & English users based on the [Meta-Llama-3.1-8B-Instruct model](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct). The fine-tuning algorithm used is ORPO [1].
|
41 |
|
42 |
-
**Compared to the original [Meta-Llama-3.1-8B-Instruct model](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct), our llama3.1-8B-Chinese-Chat model significantly reduces the issues of "Chinese questions with English answers" and the mixing of Chinese and English in responses.**
|
43 |
-
|
44 |
|
45 |
[1] Hong, Jiwoo, Noah Lee, and James Thorne. "Reference-free Monolithic Preference Optimization with Odds Ratio." arXiv preprint arXiv:2403.07691 (2024).
|
46 |
|
|
|
20 |
|
21 |
# Updates
|
22 |
|
23 |
+
- πππ [July 24, 2024] We now introduce [shenzhi-wang/Llama3.1-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3.1-8B-Chinese-Chat)! The training dataset contains >100K preference pairs, and it exhibits significant enhancements, especially in **roleplay**, **function calling**, and **math** capabilities!
|
24 |
- π₯ We provide the official **q4_k_m, q8_0, and f16 GGUF** versions of Llama3.1-8B-Chinese-Chat-**v2.1** at https://huggingface.co/shenzhi-wang/Llama3.1-8B-Chinese-Chat/tree/main/gguf!
|
25 |
|
26 |
|
|
|
39 |
|
40 |
This is the first model specifically fine-tuned for Chinese & English users based on the [Meta-Llama-3.1-8B-Instruct model](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct). The fine-tuning algorithm used is ORPO [1].
|
41 |
|
|
|
|
|
42 |
|
43 |
[1] Hong, Jiwoo, Noah Lee, and James Thorne. "Reference-free Monolithic Preference Optimization with Odds Ratio." arXiv preprint arXiv:2403.07691 (2024).
|
44 |
|