File size: 1,258 Bytes
ab008d3 aa243a1 4ed83c1 aa243a1 e81f3eb aa243a1 ab008d3 4ed83c1 aa243a1 4ed83c1 aa243a1 4ed83c1 aa243a1 f37e9cf aa243a1 c746a15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
license: apache-2.0
datasets:
- opus100
language:
- bn
- en
metrics:
- sacrebleu
pipeline_tag: translation
widget:
- text: "Will you come home tonight?"
example_title: "Example 1"
- text: "I am so sorry this is a day late, guys. Unfortunately, my internet was down so it was out of my control."
example_title: "Example 2"
model-index:
- name: shhossain/opus-mt-en-to-bn
results:
- task:
type: translation
name: Translation
dataset:
type: opus100
name: opus100
split: validation
metrics:
- type: Bleu
value: 12.537400
- type: Validation Loss
value: 2.120669
- type: Training Loss
value: 1.771200
---
# English-Bengali Translation Model
This model is finetuned on `Helsinki-NLP/opus-mt-en-inc` for English to Bangla Translation.
- **Developed by:** [shhossain](https://github.com/shhossain)
- **Model type:** [transformer-align]
- **Language(s) (NLP):** [English, Bengali]
- **License:** [apache-2.0]
- **Finetuned from model [Helsinki-NLP/opus-mt-en-inc]:** [Helsinki-NLP/opus-mt-en-inc](Helsinki-NLP/opus-mt-en-inc)
## Use with transformers
```python
from transformers import pipeline
pipe = pipeline("translation", model="shhossain/opus-mt-en-to-bn")
``` |