shoaibahmed commited on
Commit
48e6ce0
1 Parent(s): ad2950a

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 251.88 +/- 24.29
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9049966a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9049966af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9049966b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9049966c10>", "_build": "<function ActorCriticPolicy._build at 0x7f9049966ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9049966d30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9049966dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9049966e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9049966ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9049966f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9049968040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f90499680d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f90499624b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673721524308001943, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE34I73QmeY+swxpPpH7gL4uRBc+jb7uPAAAAAAAAAAAc/D+PW6+OD8ArOe9w1KQvhDf9zxdDVO9AAAAAAAAAADNtxc+HcGsP2sXnz7C7eq+dId2Pln9sLsAAAAAAAAAADOACz1kCRQ+joJIPGbiCb7coTe8y++yuwAAAAAAAAAAZnD6vIWfRz5qivQ9Z7h2vpQ+rzztraw8AAAAAAAAAADmPL89wxFyuoa2QjqPtgm2fY5AO2DlYLkAAAAAAACAPwBrFj1cHkW8U56BvaqxwDxMR6g9AiucvQAAgD8AAIA/89bDPR+d2Lme0o65MqCrtH5j7Lmucqo4AAAAAAAAgD+AFX09+A2RPbcxoLwLZEa+HEfUO52qYbwAAAAAAAAAAPNdvD29So8/aaxEPlIbqb7Grus9MGrOPQAAAAAAAAAAgOwUPcPVQboRO527wWwMOa4XLLuZuyk6AACAPwAAgD+mfvE9rtGfutkSkLtsopw4au4EvPzdtjoAAAAAAACAP4CF3r2Okg4/8oYnPkHodb6VtZw8bnK1PAAAAAAAAAAAs6e4vSlQfrqNk3s5qztiNGnDSjpz6ZK4AAAAAAAAgD8A6pe8irsKPptf8jw6IyK+q3XoPGRIp7wAAAAAAAAAADNj1DvIZwo/SOaxPTJnYb6t4m48+LjpPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdChDVQxhckCUhpRSlIwBbJRNbQGMAXSUR0CQ/6xfv4M4dX2UKGgGaAloD0MIeNMtO4Q8cECUhpRSlGgVTXgBaBZHQJD/175VOsV1fZQoaAZoCWgPQwhy/bs+c0hwQJSGlFKUaBVNVgFoFkdAkQAGCVbA13V9lChoBmgJaA9DCAg9m1Wf8nFAlIaUUpRoFU0jAWgWR0CRAFALiMo+dX2UKGgGaAloD0MIaXQHsTMSckCUhpRSlGgVTQwBaBZHQJEBNl8PWhB1fZQoaAZoCWgPQwjdlzPbFVtwQJSGlFKUaBVNKgFoFkdAkRW7bpNbknV9lChoBmgJaA9DCPSo+L+junFAlIaUUpRoFU1NAWgWR0CRFbxo7FKkdX2UKGgGaAloD0MIfgIoRhYYb0CUhpRSlGgVTTEBaBZHQJEWLXRPXTV1fZQoaAZoCWgPQwifq63Y359yQJSGlFKUaBVNMQFoFkdAkRY4s3AEdXV9lChoBmgJaA9DCKclVkaj4m1AlIaUUpRoFU0NAWgWR0CRFqWwNb1RdX2UKGgGaAloD0MIWkV/aGYKbkCUhpRSlGgVTTEBaBZHQJEWsAuIyj51fZQoaAZoCWgPQwiXHeIfdh9zQJSGlFKUaBVNMAJoFkdAkRePyGzrvHV9lChoBmgJaA9DCIULeQS3Cm9AlIaUUpRoFU1DAWgWR0CRF9ooNNJwdX2UKGgGaAloD0MImWIOgs74cECUhpRSlGgVTVUBaBZHQJEX4daMaS91fZQoaAZoCWgPQwjw/Q3aK2lvQJSGlFKUaBVNPAFoFkdAkRn+sYEW7HV9lChoBmgJaA9DCFSthVloFnBAlIaUUpRoFU0GAWgWR0CRGlWRigCfdX2UKGgGaAloD0MIdJgvL0BLckCUhpRSlGgVTREBaBZHQJEagXwb2lF1fZQoaAZoCWgPQwi/LO3U3I9vQJSGlFKUaBVNJgFoFkdAkRuFL39JjHV9lChoBmgJaA9DCAXEJFzIa09AlIaUUpRoFUvaaBZHQJEciixmkFh1fZQoaAZoCWgPQwgoQ1VMJRxyQJSGlFKUaBVNPgFoFkdAkRylm4Ajp3V9lChoBmgJaA9DCJSl1vsN6G5AlIaUUpRoFU06AWgWR0CRHYufVZs9dX2UKGgGaAloD0MIjZYDPdTXbkCUhpRSlGgVTQgBaBZHQJEdn0XgtOF1fZQoaAZoCWgPQwi5bd+jfplwQJSGlFKUaBVNIwFoFkdAkR57hNucc3V9lChoBmgJaA9DCLcm3ZbIH2xAlIaUUpRoFU0fAWgWR0CRHss9B8hLdX2UKGgGaAloD0MIxr5k4wEpcUCUhpRSlGgVTQUBaBZHQJEfmPgeii91fZQoaAZoCWgPQwhRaFn3j9ZuQJSGlFKUaBVNKQFoFkdAkR+k8zQ/o3V9lChoBmgJaA9DCHSzP1AuanNAlIaUUpRoFU0QAWgWR0CRID85S3spdX2UKGgGaAloD0MIXHfzVIcDb0CUhpRSlGgVTUQBaBZHQJEh/Ah0Qsh1fZQoaAZoCWgPQwgTZW8pZ6twQJSGlFKUaBVNcwFoFkdAkSIXTEzfrXV9lChoBmgJaA9DCJ4j8l1KpUVAlIaUUpRoFUv3aBZHQJEiVJvo/zJ1fZQoaAZoCWgPQwiF7Sdj/J1tQJSGlFKUaBVNNQFoFkdAkSP7dnCfpXV9lChoBmgJaA9DCD7shQL2VXFAlIaUUpRoFUv+aBZHQJEky0v4/NZ1fZQoaAZoCWgPQwiA1ZEjnY9vQJSGlFKUaBVNSAFoFkdAkSUpSNwR5HV9lChoBmgJaA9DCHOCNjk8gHBAlIaUUpRoFU0vAWgWR0CRJWZ/0/W2dX2UKGgGaAloD0MI8yGoGv1/ckCUhpRSlGgVTRIBaBZHQJEljwTdtVJ1fZQoaAZoCWgPQwhGfv0QG8xuQJSGlFKUaBVNHAFoFkdAkSbGVJL/THV9lChoBmgJaA9DCG9/Lhqy9nFAlIaUUpRoFU0RAWgWR0CRJ51rqMWHdX2UKGgGaAloD0MIKelhaLXOckCUhpRSlGgVTSUBaBZHQJEn7im2sq91fZQoaAZoCWgPQwiHTWTmgupwQJSGlFKUaBVNIANoFkdAkSmWV7hNunV9lChoBmgJaA9DCJs6j4r/bmxAlIaUUpRoFU1AAWgWR0CRKfJ+UhV3dX2UKGgGaAloD0MIhbNby2R8ckCUhpRSlGgVTUgBaBZHQJEq2uV5a/11fZQoaAZoCWgPQwjUnSee871yQJSGlFKUaBVNpgFoFkdAkSs1WS2Yv3V9lChoBmgJaA9DCD4/jBDeiHFAlIaUUpRoFU0pAWgWR0CRK7c3VCokdX2UKGgGaAloD0MITg6fdKIubkCUhpRSlGgVTSwBaBZHQJEsDdKujh11fZQoaAZoCWgPQwgcI9kjVFhxQJSGlFKUaBVNiQFoFkdAkSxYAsCkoHV9lChoBmgJaA9DCKjGSzfJSHFAlIaUUpRoFU0zAWgWR0CRLf0elsP8dX2UKGgGaAloD0MIiNaKNsePbkCUhpRSlGgVTRwBaBZHQJEuERvm5lR1fZQoaAZoCWgPQwigxr35jaZxQJSGlFKUaBVNMwFoFkdAkS9fWhAWznV9lChoBmgJaA9DCOKTTiRYY3FAlIaUUpRoFU1OAWgWR0CRMAbhWHUMdX2UKGgGaAloD0MIAqCKGzefckCUhpRSlGgVTSwBaBZHQJEwo47zTWp1fZQoaAZoCWgPQwiV7xmJECZwQJSGlFKUaBVNVAFoFkdAkTCjxLCemXV9lChoBmgJaA9DCAKfH0YICm5AlIaUUpRoFU0hAWgWR0CRMV0lqrR0dX2UKGgGaAloD0MIWr3D7VBGcUCUhpRSlGgVTTQBaBZHQJExo2ycCo11fZQoaAZoCWgPQwgs9MEyNvNRQJSGlFKUaBVLyWgWR0CRMba4c3l0dX2UKGgGaAloD0MIHAk02FTQbUCUhpRSlGgVTSIBaBZHQJEy1wm3OOd1fZQoaAZoCWgPQwgzMzMzc3NxQJSGlFKUaBVNJwFoFkdAkTNWYa5wwXV9lChoBmgJaA9DCOdtbHZk/XJAlIaUUpRoFU0IAWgWR0CRM+4Vh1DCdX2UKGgGaAloD0MIgjl6/F6fbECUhpRSlGgVTU8BaBZHQJE1Tai9Iwx1fZQoaAZoCWgPQwhJufscn89wQJSGlFKUaBVNJwFoFkdAkTVvwAlv63V9lChoBmgJaA9DCE4rhUCu+W9AlIaUUpRoFU1DAWgWR0CRSQYsd1dPdX2UKGgGaAloD0MI5IOezWoKcECUhpRSlGgVTQgBaBZHQJFJDF6zE751fZQoaAZoCWgPQwhwsaIG019vQJSGlFKUaBVNPQFoFkdAkUqOWjXWfHV9lChoBmgJaA9DCDIfEOhMz3NAlIaUUpRoFUvzaBZHQJFKxTjvNNd1fZQoaAZoCWgPQwjrbp7qkPByQJSGlFKUaBVNJwFoFkdAkUve/k/8mHV9lChoBmgJaA9DCCapTDFHHXFAlIaUUpRoFU0LAWgWR0CRTMlJYkmhdX2UKGgGaAloD0MIUnx8QradckCUhpRSlGgVTTcBaBZHQJFNBPWQOnV1fZQoaAZoCWgPQwhoyk4/qFNuQJSGlFKUaBVNKAFoFkdAkU2kv4/NaHV9lChoBmgJaA9DCMTOFDqv3ThAlIaUUpRoFU0GAWgWR0CRTnbH6uW9dX2UKGgGaAloD0MI4zjwarlTcECUhpRSlGgVTTUBaBZHQJFPgO8TSLJ1fZQoaAZoCWgPQwjq6Lga2aptQJSGlFKUaBVNMwFoFkdAkVDPOt4iYHV9lChoBmgJaA9DCLwDPGkhFXJAlIaUUpRoFU0uAWgWR0CRUmDMvAXVdX2UKGgGaAloD0MI1QRR90HtcECUhpRSlGgVTRcBaBZHQJFSbABT4tZ1fZQoaAZoCWgPQwjurx737flwQJSGlFKUaBVNJAFoFkdAkVLe1jRUm3V9lChoBmgJaA9DCPtcbcV+iXBAlIaUUpRoFU1nAWgWR0CRVLBPbfxddX2UKGgGaAloD0MIh1J7EW2dcECUhpRSlGgVTR8BaBZHQJFU65CngpB1fZQoaAZoCWgPQwhLW1zjswtgQJSGlFKUaBVN6ANoFkdAkVWlschkiHV9lChoBmgJaA9DCC0nofSFQXNAlIaUUpRoFU08AWgWR0CRVbCQLeANdX2UKGgGaAloD0MIzVoKSPtUbUCUhpRSlGgVTUEBaBZHQJFYs78vVVh1fZQoaAZoCWgPQwg+IqZEkqRyQJSGlFKUaBVNZQFoFkdAkVjGq94/vHV9lChoBmgJaA9DCHrf+NozTHBAlIaUUpRoFU1RAWgWR0CRWgrZrYXgdX2UKGgGaAloD0MIOzlDcccYckCUhpRSlGgVTSIBaBZHQJFaYWN3np11fZQoaAZoCWgPQwjePqvMlEZRQJSGlFKUaBVL9mgWR0CRW9K77Kq5dX2UKGgGaAloD0MIVrlQ+ReccECUhpRSlGgVTZIBaBZHQJFd01baAWl1fZQoaAZoCWgPQwhd3hyuVZxvQJSGlFKUaBVNVQFoFkdAkV4S5NGmUHV9lChoBmgJaA9DCHzxRXv8nHFAlIaUUpRoFU0+AWgWR0CRXtE6T4cndX2UKGgGaAloD0MIjL/tCRL8bUCUhpRSlGgVTTMBaBZHQJFe5x6v7nB1fZQoaAZoCWgPQwh716AvPURvQJSGlFKUaBVNMAFoFkdAkWDMZUDMeXV9lChoBmgJaA9DCOVH/Io1pm5AlIaUUpRoFU0rAWgWR0CRYWU4JeE7dX2UKGgGaAloD0MIWKg1zTtGOUCUhpRSlGgVS/VoFkdAkWRBo7FKkHV9lChoBmgJaA9DCGLX9nZLmmJAlIaUUpRoFU3oA2gWR0CRZi89fTkRdX2UKGgGaAloD0MI1h2LbZJicUCUhpRSlGgVTVMBaBZHQJFmsfdRBNV1fZQoaAZoCWgPQwiHTWTmgkhvQJSGlFKUaBVNQgFoFkdAkWdlOXVslHV9lChoBmgJaA9DCDjcR25N8HFAlIaUUpRoFU0hAWgWR0CRZ86FuejEdX2UKGgGaAloD0MId0mcFdH8Y0CUhpRSlGgVTegDaBZHQJFo5npSrHV1fZQoaAZoCWgPQwjHZkeq7/FuQJSGlFKUaBVNHwFoFkdAkWni8zyjHnV9lChoBmgJaA9DCMtkOJ7P1W9AlIaUUpRoFU0ZAWgWR0CRamyoGY8ddX2UKGgGaAloD0MIC5qWWBkicUCUhpRSlGgVTTABaBZHQJFrOWom5Ud1fZQoaAZoCWgPQwjbUDHOn7xxQJSGlFKUaBVNVgFoFkdAkWu8O09hZ3V9lChoBmgJaA9DCJ32lJzTCXBAlIaUUpRoFU0+AWgWR0CRbailzltCdX2UKGgGaAloD0MIy4EealuBcECUhpRSlGgVTTgBaBZHQJFt/s8gZCR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb95ca5e2bc4978edd03bd9e16c8e16109a89eb82ac7a76a48b7b98f748c3c72
3
+ size 147416
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9049966a60>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9049966af0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9049966b80>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9049966c10>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9049966ca0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9049966d30>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9049966dc0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9049966e50>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9049966ee0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9049966f70>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9049968040>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f90499680d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f90499624b0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673721524308001943,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE34I73QmeY+swxpPpH7gL4uRBc+jb7uPAAAAAAAAAAAc/D+PW6+OD8ArOe9w1KQvhDf9zxdDVO9AAAAAAAAAADNtxc+HcGsP2sXnz7C7eq+dId2Pln9sLsAAAAAAAAAADOACz1kCRQ+joJIPGbiCb7coTe8y++yuwAAAAAAAAAAZnD6vIWfRz5qivQ9Z7h2vpQ+rzztraw8AAAAAAAAAADmPL89wxFyuoa2QjqPtgm2fY5AO2DlYLkAAAAAAACAPwBrFj1cHkW8U56BvaqxwDxMR6g9AiucvQAAgD8AAIA/89bDPR+d2Lme0o65MqCrtH5j7Lmucqo4AAAAAAAAgD+AFX09+A2RPbcxoLwLZEa+HEfUO52qYbwAAAAAAAAAAPNdvD29So8/aaxEPlIbqb7Grus9MGrOPQAAAAAAAAAAgOwUPcPVQboRO527wWwMOa4XLLuZuyk6AACAPwAAgD+mfvE9rtGfutkSkLtsopw4au4EvPzdtjoAAAAAAACAP4CF3r2Okg4/8oYnPkHodb6VtZw8bnK1PAAAAAAAAAAAs6e4vSlQfrqNk3s5qztiNGnDSjpz6ZK4AAAAAAAAgD8A6pe8irsKPptf8jw6IyK+q3XoPGRIp7wAAAAAAAAAADNj1DvIZwo/SOaxPTJnYb6t4m48+LjpPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdChDVQxhckCUhpRSlIwBbJRNbQGMAXSUR0CQ/6xfv4M4dX2UKGgGaAloD0MIeNMtO4Q8cECUhpRSlGgVTXgBaBZHQJD/175VOsV1fZQoaAZoCWgPQwhy/bs+c0hwQJSGlFKUaBVNVgFoFkdAkQAGCVbA13V9lChoBmgJaA9DCAg9m1Wf8nFAlIaUUpRoFU0jAWgWR0CRAFALiMo+dX2UKGgGaAloD0MIaXQHsTMSckCUhpRSlGgVTQwBaBZHQJEBNl8PWhB1fZQoaAZoCWgPQwjdlzPbFVtwQJSGlFKUaBVNKgFoFkdAkRW7bpNbknV9lChoBmgJaA9DCPSo+L+junFAlIaUUpRoFU1NAWgWR0CRFbxo7FKkdX2UKGgGaAloD0MIfgIoRhYYb0CUhpRSlGgVTTEBaBZHQJEWLXRPXTV1fZQoaAZoCWgPQwifq63Y359yQJSGlFKUaBVNMQFoFkdAkRY4s3AEdXV9lChoBmgJaA9DCKclVkaj4m1AlIaUUpRoFU0NAWgWR0CRFqWwNb1RdX2UKGgGaAloD0MIWkV/aGYKbkCUhpRSlGgVTTEBaBZHQJEWsAuIyj51fZQoaAZoCWgPQwiXHeIfdh9zQJSGlFKUaBVNMAJoFkdAkRePyGzrvHV9lChoBmgJaA9DCIULeQS3Cm9AlIaUUpRoFU1DAWgWR0CRF9ooNNJwdX2UKGgGaAloD0MImWIOgs74cECUhpRSlGgVTVUBaBZHQJEX4daMaS91fZQoaAZoCWgPQwjw/Q3aK2lvQJSGlFKUaBVNPAFoFkdAkRn+sYEW7HV9lChoBmgJaA9DCFSthVloFnBAlIaUUpRoFU0GAWgWR0CRGlWRigCfdX2UKGgGaAloD0MIdJgvL0BLckCUhpRSlGgVTREBaBZHQJEagXwb2lF1fZQoaAZoCWgPQwi/LO3U3I9vQJSGlFKUaBVNJgFoFkdAkRuFL39JjHV9lChoBmgJaA9DCAXEJFzIa09AlIaUUpRoFUvaaBZHQJEciixmkFh1fZQoaAZoCWgPQwgoQ1VMJRxyQJSGlFKUaBVNPgFoFkdAkRylm4Ajp3V9lChoBmgJaA9DCJSl1vsN6G5AlIaUUpRoFU06AWgWR0CRHYufVZs9dX2UKGgGaAloD0MIjZYDPdTXbkCUhpRSlGgVTQgBaBZHQJEdn0XgtOF1fZQoaAZoCWgPQwi5bd+jfplwQJSGlFKUaBVNIwFoFkdAkR57hNucc3V9lChoBmgJaA9DCLcm3ZbIH2xAlIaUUpRoFU0fAWgWR0CRHss9B8hLdX2UKGgGaAloD0MIxr5k4wEpcUCUhpRSlGgVTQUBaBZHQJEfmPgeii91fZQoaAZoCWgPQwhRaFn3j9ZuQJSGlFKUaBVNKQFoFkdAkR+k8zQ/o3V9lChoBmgJaA9DCHSzP1AuanNAlIaUUpRoFU0QAWgWR0CRID85S3spdX2UKGgGaAloD0MIXHfzVIcDb0CUhpRSlGgVTUQBaBZHQJEh/Ah0Qsh1fZQoaAZoCWgPQwgTZW8pZ6twQJSGlFKUaBVNcwFoFkdAkSIXTEzfrXV9lChoBmgJaA9DCJ4j8l1KpUVAlIaUUpRoFUv3aBZHQJEiVJvo/zJ1fZQoaAZoCWgPQwiF7Sdj/J1tQJSGlFKUaBVNNQFoFkdAkSP7dnCfpXV9lChoBmgJaA9DCD7shQL2VXFAlIaUUpRoFUv+aBZHQJEky0v4/NZ1fZQoaAZoCWgPQwiA1ZEjnY9vQJSGlFKUaBVNSAFoFkdAkSUpSNwR5HV9lChoBmgJaA9DCHOCNjk8gHBAlIaUUpRoFU0vAWgWR0CRJWZ/0/W2dX2UKGgGaAloD0MI8yGoGv1/ckCUhpRSlGgVTRIBaBZHQJEljwTdtVJ1fZQoaAZoCWgPQwhGfv0QG8xuQJSGlFKUaBVNHAFoFkdAkSbGVJL/THV9lChoBmgJaA9DCG9/Lhqy9nFAlIaUUpRoFU0RAWgWR0CRJ51rqMWHdX2UKGgGaAloD0MIKelhaLXOckCUhpRSlGgVTSUBaBZHQJEn7im2sq91fZQoaAZoCWgPQwiHTWTmgupwQJSGlFKUaBVNIANoFkdAkSmWV7hNunV9lChoBmgJaA9DCJs6j4r/bmxAlIaUUpRoFU1AAWgWR0CRKfJ+UhV3dX2UKGgGaAloD0MIhbNby2R8ckCUhpRSlGgVTUgBaBZHQJEq2uV5a/11fZQoaAZoCWgPQwjUnSee871yQJSGlFKUaBVNpgFoFkdAkSs1WS2Yv3V9lChoBmgJaA9DCD4/jBDeiHFAlIaUUpRoFU0pAWgWR0CRK7c3VCokdX2UKGgGaAloD0MITg6fdKIubkCUhpRSlGgVTSwBaBZHQJEsDdKujh11fZQoaAZoCWgPQwgcI9kjVFhxQJSGlFKUaBVNiQFoFkdAkSxYAsCkoHV9lChoBmgJaA9DCKjGSzfJSHFAlIaUUpRoFU0zAWgWR0CRLf0elsP8dX2UKGgGaAloD0MIiNaKNsePbkCUhpRSlGgVTRwBaBZHQJEuERvm5lR1fZQoaAZoCWgPQwigxr35jaZxQJSGlFKUaBVNMwFoFkdAkS9fWhAWznV9lChoBmgJaA9DCOKTTiRYY3FAlIaUUpRoFU1OAWgWR0CRMAbhWHUMdX2UKGgGaAloD0MIAqCKGzefckCUhpRSlGgVTSwBaBZHQJEwo47zTWp1fZQoaAZoCWgPQwiV7xmJECZwQJSGlFKUaBVNVAFoFkdAkTCjxLCemXV9lChoBmgJaA9DCAKfH0YICm5AlIaUUpRoFU0hAWgWR0CRMV0lqrR0dX2UKGgGaAloD0MIWr3D7VBGcUCUhpRSlGgVTTQBaBZHQJExo2ycCo11fZQoaAZoCWgPQwgs9MEyNvNRQJSGlFKUaBVLyWgWR0CRMba4c3l0dX2UKGgGaAloD0MIHAk02FTQbUCUhpRSlGgVTSIBaBZHQJEy1wm3OOd1fZQoaAZoCWgPQwgzMzMzc3NxQJSGlFKUaBVNJwFoFkdAkTNWYa5wwXV9lChoBmgJaA9DCOdtbHZk/XJAlIaUUpRoFU0IAWgWR0CRM+4Vh1DCdX2UKGgGaAloD0MIgjl6/F6fbECUhpRSlGgVTU8BaBZHQJE1Tai9Iwx1fZQoaAZoCWgPQwhJufscn89wQJSGlFKUaBVNJwFoFkdAkTVvwAlv63V9lChoBmgJaA9DCE4rhUCu+W9AlIaUUpRoFU1DAWgWR0CRSQYsd1dPdX2UKGgGaAloD0MI5IOezWoKcECUhpRSlGgVTQgBaBZHQJFJDF6zE751fZQoaAZoCWgPQwhwsaIG019vQJSGlFKUaBVNPQFoFkdAkUqOWjXWfHV9lChoBmgJaA9DCDIfEOhMz3NAlIaUUpRoFUvzaBZHQJFKxTjvNNd1fZQoaAZoCWgPQwjrbp7qkPByQJSGlFKUaBVNJwFoFkdAkUve/k/8mHV9lChoBmgJaA9DCCapTDFHHXFAlIaUUpRoFU0LAWgWR0CRTMlJYkmhdX2UKGgGaAloD0MIUnx8QradckCUhpRSlGgVTTcBaBZHQJFNBPWQOnV1fZQoaAZoCWgPQwhoyk4/qFNuQJSGlFKUaBVNKAFoFkdAkU2kv4/NaHV9lChoBmgJaA9DCMTOFDqv3ThAlIaUUpRoFU0GAWgWR0CRTnbH6uW9dX2UKGgGaAloD0MI4zjwarlTcECUhpRSlGgVTTUBaBZHQJFPgO8TSLJ1fZQoaAZoCWgPQwjq6Lga2aptQJSGlFKUaBVNMwFoFkdAkVDPOt4iYHV9lChoBmgJaA9DCLwDPGkhFXJAlIaUUpRoFU0uAWgWR0CRUmDMvAXVdX2UKGgGaAloD0MI1QRR90HtcECUhpRSlGgVTRcBaBZHQJFSbABT4tZ1fZQoaAZoCWgPQwjurx737flwQJSGlFKUaBVNJAFoFkdAkVLe1jRUm3V9lChoBmgJaA9DCPtcbcV+iXBAlIaUUpRoFU1nAWgWR0CRVLBPbfxddX2UKGgGaAloD0MIh1J7EW2dcECUhpRSlGgVTR8BaBZHQJFU65CngpB1fZQoaAZoCWgPQwhLW1zjswtgQJSGlFKUaBVN6ANoFkdAkVWlschkiHV9lChoBmgJaA9DCC0nofSFQXNAlIaUUpRoFU08AWgWR0CRVbCQLeANdX2UKGgGaAloD0MIzVoKSPtUbUCUhpRSlGgVTUEBaBZHQJFYs78vVVh1fZQoaAZoCWgPQwg+IqZEkqRyQJSGlFKUaBVNZQFoFkdAkVjGq94/vHV9lChoBmgJaA9DCHrf+NozTHBAlIaUUpRoFU1RAWgWR0CRWgrZrYXgdX2UKGgGaAloD0MIOzlDcccYckCUhpRSlGgVTSIBaBZHQJFaYWN3np11fZQoaAZoCWgPQwjePqvMlEZRQJSGlFKUaBVL9mgWR0CRW9K77Kq5dX2UKGgGaAloD0MIVrlQ+ReccECUhpRSlGgVTZIBaBZHQJFd01baAWl1fZQoaAZoCWgPQwhd3hyuVZxvQJSGlFKUaBVNVQFoFkdAkV4S5NGmUHV9lChoBmgJaA9DCHzxRXv8nHFAlIaUUpRoFU0+AWgWR0CRXtE6T4cndX2UKGgGaAloD0MIjL/tCRL8bUCUhpRSlGgVTTMBaBZHQJFe5x6v7nB1fZQoaAZoCWgPQwh716AvPURvQJSGlFKUaBVNMAFoFkdAkWDMZUDMeXV9lChoBmgJaA9DCOVH/Io1pm5AlIaUUpRoFU0rAWgWR0CRYWU4JeE7dX2UKGgGaAloD0MIWKg1zTtGOUCUhpRSlGgVS/VoFkdAkWRBo7FKkHV9lChoBmgJaA9DCGLX9nZLmmJAlIaUUpRoFU3oA2gWR0CRZi89fTkRdX2UKGgGaAloD0MI1h2LbZJicUCUhpRSlGgVTVMBaBZHQJFmsfdRBNV1fZQoaAZoCWgPQwiHTWTmgkhvQJSGlFKUaBVNQgFoFkdAkWdlOXVslHV9lChoBmgJaA9DCDjcR25N8HFAlIaUUpRoFU0hAWgWR0CRZ86FuejEdX2UKGgGaAloD0MId0mcFdH8Y0CUhpRSlGgVTegDaBZHQJFo5npSrHV1fZQoaAZoCWgPQwjHZkeq7/FuQJSGlFKUaBVNHwFoFkdAkWni8zyjHnV9lChoBmgJaA9DCMtkOJ7P1W9AlIaUUpRoFU0ZAWgWR0CRamyoGY8ddX2UKGgGaAloD0MIC5qWWBkicUCUhpRSlGgVTTABaBZHQJFrOWom5Ud1fZQoaAZoCWgPQwjbUDHOn7xxQJSGlFKUaBVNVgFoFkdAkWu8O09hZ3V9lChoBmgJaA9DCJ32lJzTCXBAlIaUUpRoFU0+AWgWR0CRbailzltCdX2UKGgGaAloD0MIy4EealuBcECUhpRSlGgVTTgBaBZHQJFt/s8gZCR1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:138bab320bf44bb69bd663c2bb6da38a0c672b148f892b7d65709892f6012900
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5893fd58e0dcc76d6acf8db024af3eb94e32aa8b846820ffeee2cc357823c1d
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (207 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 251.87512819719456, "std_reward": 24.293989831557095, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-14T18:58:46.864670"}