File size: 7,521 Bytes
82e9e7e 75accd1 0b141cf 82e9e7e 01b3b4e 46f4151 cb95f7c 1fd8274 4ed23c8 f8b478d 58e1599 0aeed68 58e1599 a7bb824 58e1599 b6fbea9 a7bb824 b6fbea9 a7bb824 b6fbea9 6e002ef b6fbea9 30018c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
---
tags:
- GUI agents
- vision-language-action model
- computer use
base_model:
- Qwen/Qwen2-VL-2B-Instruct
license: mit
---
[Github](https://github.com/showlab/ShowUI/tree/main) | [arXiv](https://arxiv.org/abs/2411.17465) | [HF Paper](https://huggingface.co/papers/2411.17465) | [Spaces](https://huggingface.co/spaces/showlab/ShowUI) | [Datasets](https://huggingface.co/datasets/showlab/ShowUI-desktop-8K) | [Quick Start](https://huggingface.co/showlab/ShowUI-2B)
<img src="examples/showui.png" alt="ShowUI" width="640">
ShowUI is a lightweight (2B) vision-language-action model designed for GUI agents.
## 🤗 Try our HF Space Demo
https://huggingface.co/spaces/showlab/ShowUI
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64440be5af034cdfd69ca3a7/8-W-6xWN32Fsxed0vzBMK.png)
## ⭐ Quick Start
1. Load model
```python
import ast
import torch
from PIL import Image, ImageDraw
from qwen_vl_utils import process_vision_info
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
def draw_point(image_input, point=None, radius=5):
if isinstance(image_input, str):
image = Image.open(BytesIO(requests.get(image_input).content)) if image_input.startswith('http') else Image.open(image_input)
else:
image = image_input
if point:
x, y = point[0] * image.width, point[1] * image.height
ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red')
display(image)
return
model = Qwen2VLForConditionalGeneration.from_pretrained(
"showlab/ShowUI-2B",
torch_dtype=torch.bfloat16,
device_map="auto"
)
min_pixels = 256*28*28
max_pixels = 1344*28*28
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
```
2. **UI Grounding**
```python
img_url = 'examples/web_dbd7514b-9ca3-40cd-b09a-990f7b955da1.png'
query = "Nahant"
_SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1."
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": _SYSTEM},
{"type": "image", "image": img_url, "min_pixels": min_pixels, "max_pixels": max_pixels},
{"type": "text", "text": query}
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True,
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
click_xy = ast.literal_eval(output_text)
# [0.73, 0.21]
draw_point(img_url, click_xy, 10)
```
This will visualize the grounding results like (where the red points are [x,y])
![download](https://github.com/user-attachments/assets/8fe2783d-05b6-44e6-a26c-8718d02b56cb)
3. **UI Navigation**
- Set up system prompt.
```python
_NAV_SYSTEM = """You are an assistant trained to navigate the {_APP} screen.
Given a task instruction, a screen observation, and an action history sequence,
output the next action and wait for the next observation.
Here is the action space:
{_ACTION_SPACE}
"""
_NAV_FORMAT = """
Format the action as a dictionary with the following keys:
{'action': 'ACTION_TYPE', 'value': 'element', 'position': [x,y]}
If value or position is not applicable, set it as `None`.
Position might be [[x1,y1], [x2,y2]] if the action requires a start and end position.
Position represents the relative coordinates on the screenshot and should be scaled to a range of 0-1.
"""
action_map = {
'web': """
1. `CLICK`: Click on an element, value is not applicable and the position [x,y] is required.
2. `INPUT`: Type a string into an element, value is a string to type and the position [x,y] is required.
3. `SELECT`: Select a value for an element, value is not applicable and the position [x,y] is required.
4. `HOVER`: Hover on an element, value is not applicable and the position [x,y] is required.
5. `ANSWER`: Answer the question, value is the answer and the position is not applicable.
6. `ENTER`: Enter operation, value and position are not applicable.
7. `SCROLL`: Scroll the screen, value is the direction to scroll and the position is not applicable.
8. `SELECT_TEXT`: Select some text content, value is not applicable and position [[x1,y1], [x2,y2]] is the start and end position of the select operation.
9. `COPY`: Copy the text, value is the text to copy and the position is not applicable.
""",
'phone': """
1. `INPUT`: Type a string into an element, value is not applicable and the position [x,y] is required.
2. `SWIPE`: Swipe the screen, value is not applicable and the position [[x1,y1], [x2,y2]] is the start and end position of the swipe operation.
3. `TAP`: Tap on an element, value is not applicable and the position [x,y] is required.
4. `ANSWER`: Answer the question, value is the status (e.g., 'task complete') and the position is not applicable.
5. `ENTER`: Enter operation, value and position are not applicable.
"""
}
```
```python
img_url = 'examples/chrome.png'
split='web'
system_prompt = _NAV_SYSTEM.format(_APP=split, _ACTION_SPACE=action_map[split])
query = "Search the weather for the New York city."
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": system_prompt},
{"type": "text", "text": f'Task: {query}'},
# {"type": "text", "text": PAST_ACTION},
{"type": "image", "image": img_url, "min_pixels": min_pixels, "max_pixels": max_pixels},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True,
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
print(output_text)
# {'action': 'CLICK', 'value': None, 'position': [0.49, 0.42]},
# {'action': 'INPUT', 'value': 'weather for New York city', 'position': [0.49, 0.42]},
# {'action': 'ENTER', 'value': None, 'position': None}
```
![download](https://github.com/user-attachments/assets/624097ea-06f2-4c8f-83f6-b6b9ee439c0c)
If you find our work helpful, please consider citing our paper.
```
@misc{lin2024showui,
title={ShowUI: One Vision-Language-Action Model for GUI Visual Agent},
author={Kevin Qinghong Lin and Linjie Li and Difei Gao and Zhengyuan Yang and Shiwei Wu and Zechen Bai and Weixian Lei and Lijuan Wang and Mike Zheng Shou},
year={2024},
eprint={2411.17465},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2411.17465},
}
``` |