shreyasgite
commited on
Commit
•
3c8f5d8
1
Parent(s):
ec39e7b
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-large-xls-r-300m-dm32
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-large-xls-r-300m-dm32
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.5208
|
20 |
+
- Accuracy: 0.7292
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0001
|
40 |
+
- train_batch_size: 8
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 16
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 22
|
48 |
+
- mixed_precision_training: Native AMP
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
54 |
+
| No log | 2.41 | 34 | 0.6848 | 0.5833 |
|
55 |
+
| No log | 4.83 | 68 | 0.6879 | 0.5833 |
|
56 |
+
| No log | 7.28 | 102 | 0.6892 | 0.6042 |
|
57 |
+
| 0.7202 | 9.69 | 136 | 0.6809 | 0.5833 |
|
58 |
+
| 0.7202 | 12.14 | 170 | 0.6712 | 0.6042 |
|
59 |
+
| 0.7202 | 14.55 | 204 | 0.5907 | 0.7708 |
|
60 |
+
| 0.6991 | 16.97 | 238 | 0.7485 | 0.6875 |
|
61 |
+
| 0.6991 | 19.41 | 272 | 0.5756 | 0.7083 |
|
62 |
+
| 0.6991 | 21.83 | 306 | 0.5208 | 0.7292 |
|
63 |
+
|
64 |
+
|
65 |
+
### Framework versions
|
66 |
+
|
67 |
+
- Transformers 4.16.2
|
68 |
+
- Pytorch 1.10.0+cu111
|
69 |
+
- Datasets 1.18.3
|
70 |
+
- Tokenizers 0.11.0
|