shtandon commited on
Commit
625e740
1 Parent(s): 9d911e6

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 222.02 +/- 29.41
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff4910d7dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff4910d7e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff4910d7ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff4910d7f70>", "_build": "<function ActorCriticPolicy._build at 0x7ff49105b040>", "forward": "<function ActorCriticPolicy.forward at 0x7ff49105b0d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff49105b160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff49105b1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff49105b280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff49105b310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff49105b3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff49105b430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff4910ceea0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673426543513760210, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFr0kr7D23M7UNTeO036F7mjZAC9OoSxNQAAgD8AAIA/hrUVvjgv2bsUIx69PkBBu+CLIT1QDyQ8AACAPwAAgD+AdJy94diZuiajgDsqHcQ4KImKO0J7GboAAIA/AACAPzP7BjspPAi63mNHOVeimzRQPAs7RexluAAAgD8AAIA/jR25PXuejLrGDY270oWrN77+ULulyAC3AACAPwAAgD822nO+SjYKvdgHy7xx60q7WadwPmYAGDwAAIA/AACAPw28yj0UQIu6wrXDuEDnSbZJG9Q6eAbiNwAAgD8AAIA/zWqwvisl5D07gn09RBBjvjZIur26+KM8AAAAAAAAAAB66q4+F3+3PmDt1b2l7yG+S8gyPRsQcb0AAAAAAAAAADomUr7I6cA7iAGWuqACHjjoB0u9GsitOQAAgD8AAIA/zUzpvRR29T1+F749Tq8KvqzIoby2KpK9AAAAAAAAAABmILa8IViHPV7RX7ym9Mq9d3hEPbRugbwAAAAAAAAAAMD8q717spa6oq16uxFvoze20zw6Fe0HtwAAgD8AAIA/TmGsvpRxWL1apTE6rKYKOVqrhT4PI4q5AACAPwAAgD8NIoM9FGCJuk6v/juOBhm2joE8u843CLUAAIA/AACAP2a/k76hmVE+rRpAPv3M6L3o/uk7aZuhPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4UVfQZowXUCUhpRSlIwBbJRN6AOMAXSUR0CMIXrfLs8gdX2UKGgGaAloD0MIisxc4PJ8YECUhpRSlGgVTegDaBZHQIxcNtfoicJ1fZQoaAZoCWgPQwjVWpiFdsVTQJSGlFKUaBVN6ANoFkdAjIcSrPt2LnV9lChoBmgJaA9DCHf1KjI6d1dAlIaUUpRoFU3oA2gWR0CMizp7kXDWdX2UKGgGaAloD0MIut3LfXLyXUCUhpRSlGgVTegDaBZHQIym73wkPc11fZQoaAZoCWgPQwjByqFFttdkQJSGlFKUaBVNdgNoFkdAjKfGXw9aEHV9lChoBmgJaA9DCK8mT1lNM11AlIaUUpRoFU3oA2gWR0CMqysq8UVSdX2UKGgGaAloD0MIFFlrKLVgXkCUhpRSlGgVTegDaBZHQIyv3f8/D+B1fZQoaAZoCWgPQwhjgEQTqHphQJSGlFKUaBVN6ANoFkdAjLAmois4k3V9lChoBmgJaA9DCMoyxLGuAmJAlIaUUpRoFU3oA2gWR0CMu9hOxjaxdX2UKGgGaAloD0MItHQF24j/WkCUhpRSlGgVTegDaBZHQIy+1R77bcp1fZQoaAZoCWgPQwhWt3pOelJYQJSGlFKUaBVN6ANoFkdAjL9gDA8B/HV9lChoBmgJaA9DCDZy3ZTyUVhAlIaUUpRoFU3oA2gWR0CMzbMRHww1dX2UKGgGaAloD0MISYRGsHGqXkCUhpRSlGgVTegDaBZHQIzS25BkZrJ1fZQoaAZoCWgPQwi5qBYRRT9iQJSGlFKUaBVN6ANoFkdAjNMKV6eGwnV9lChoBmgJaA9DCO0seqcCKVxAlIaUUpRoFU3oA2gWR0CM06cWj45+dX2UKGgGaAloD0MIfSO6Z10IXECUhpRSlGgVTegDaBZHQIzaPTAnDzl1fZQoaAZoCWgPQwjPMotQ7DViQJSGlFKUaBVN6ANoFkdAjN59NFjNIXV9lChoBmgJaA9DCJzgm6bPRkHAlIaUUpRoFU0LAWgWR0CM9RNxEORUdX2UKGgGaAloD0MInl+UoL+/WkCUhpRSlGgVTegDaBZHQI0OIfuCwr11fZQoaAZoCWgPQwj+uP3yyS5eQJSGlFKUaBVN6ANoFkdAjRLfuLJjlXV9lChoBmgJaA9DCMaIRKFl5VZAlIaUUpRoFU3oA2gWR0CNM5XkHUtqdX2UKGgGaAloD0MIQInPnWDNZECUhpRSlGgVTegDaBZHQI00hekYXO51fZQoaAZoCWgPQwgPDCB8KD5gQJSGlFKUaBVN6ANoFkdAjTgrFwT/Q3V9lChoBmgJaA9DCB9Mio9PyC9AlIaUUpRoFU0UAWgWR0CNOoVIqbz9dX2UKGgGaAloD0MIm1lLAemjYkCUhpRSlGgVTegDaBZHQI09TTjNpud1fZQoaAZoCWgPQwgepRKeUAViQJSGlFKUaBVN6ANoFkdAjT2PsAvL5nV9lChoBmgJaA9DCIE9JlIap2RAlIaUUpRoFU3oA2gWR0CNSa3ZPEbYdX2UKGgGaAloD0MIJlXbTXDGYUCUhpRSlGgVTegDaBZHQI1MlFlTWG11fZQoaAZoCWgPQwjQfqSIDPZgQJSGlFKUaBVN6ANoFkdAjU0e5nUUf3V9lChoBmgJaA9DCCBfQgWHOWNAlIaUUpRoFU3oA2gWR0CNWlkH2RJVdX2UKGgGaAloD0MIJJnVO1wgYkCUhpRSlGgVTegDaBZHQI1fZ4ptrKx1fZQoaAZoCWgPQwjDR8SUSINeQJSGlFKUaBVN6ANoFkdAjV/8GLUCrHV9lChoBmgJaA9DCF2MgXUcYmBAlIaUUpRoFU3oA2gWR0CNZkp3HJcPdX2UKGgGaAloD0MIfCk8aHZMXUCUhpRSlGgVTegDaBZHQI1qQ9X9zfd1fZQoaAZoCWgPQwgcYOY7eHhkQJSGlFKUaBVN6ANoFkdAjbZGx2SuAHV9lChoBmgJaA9DCHBE96xrdlxAlIaUUpRoFU3oA2gWR0CN0MKb8WKudX2UKGgGaAloD0MI6pEGt7UcZUCUhpRSlGgVTegDaBZHQI3vKIWP91l1fZQoaAZoCWgPQwj3WWWmtN9UQJSGlFKUaBVN6ANoFkdAjfAOaWom5XV9lChoBmgJaA9DCJYkz/V9PlxAlIaUUpRoFU3oA2gWR0CN84mb9ZRsdX2UKGgGaAloD0MIhbGFIAdVSUCUhpRSlGgVTegDaBZHQI31kFfReC11fZQoaAZoCWgPQwg429yYnopjQJSGlFKUaBVN6ANoFkdAjfgYcvM8o3V9lChoBmgJaA9DCMU9lj50d1hAlIaUUpRoFU3oA2gWR0CN+F3K0UoKdX2UKGgGaAloD0MIM6g2OJEvYECUhpRSlGgVTegDaBZHQI4DHc+JP691fZQoaAZoCWgPQwiAKm7cYrpcQJSGlFKUaBVN6ANoFkdAjgXXN1QqJHV9lChoBmgJaA9DCCY1tAHYQlBAlIaUUpRoFU3oA2gWR0COBmQRwqAjdX2UKGgGaAloD0MIxM9/D16LMkCUhpRSlGgVTQ4BaBZHQI4OQ0VJtix1fZQoaAZoCWgPQwg1Y9F09olhQJSGlFKUaBVN6ANoFkdAjhLcTrVvuXV9lChoBmgJaA9DCH5Rgv5CG2VAlIaUUpRoFU3oA2gWR0COFyS00FbFdX2UKGgGaAloD0MIM2spIG1BZECUhpRSlGgVTegDaBZHQI4XsfA9FF51fZQoaAZoCWgPQwiUowBRMLxjQJSGlFKUaBVN6ANoFkdAjh3c+aBqbnV9lChoBmgJaA9DCPoLPWL0RVxAlIaUUpRoFU3oA2gWR0COIeIcBEKFdX2UKGgGaAloD0MIYYpyaXx6YECUhpRSlGgVTegDaBZHQI42nuPV/c51fZQoaAZoCWgPQwgCZVOucH5mQJSGlFKUaBVN6ANoFkdAjlE+x4Y773V9lChoBmgJaA9DCOWdQxmq0mFAlIaUUpRoFU3oA2gWR0COb/VR1oxpdX2UKGgGaAloD0MI7Z48LNQdXECUhpRSlGgVTegDaBZHQI5zkg6ltTF1fZQoaAZoCWgPQwhyxFp8CohfQJSGlFKUaBVN6ANoFkdAjnWumixmkHV9lChoBmgJaA9DCM8wtaWOnWJAlIaUUpRoFU3oA2gWR0COeEMMqjJudX2UKGgGaAloD0MIofXwZaIgZECUhpRSlGgVTegDaBZHQI54hV2icoZ1fZQoaAZoCWgPQwj+KOrMPSJcQJSGlFKUaBVN6ANoFkdAjoOWDHwPRXV9lChoBmgJaA9DCI0mF2Ng4mJAlIaUUpRoFU3oA2gWR0COhl101ZTydX2UKGgGaAloD0MIStBf6JEzZkCUhpRSlGgVTegDaBZHQI6G4PI4lyB1fZQoaAZoCWgPQwgi/8wgvhxlQJSGlFKUaBVN6ANoFkdAjo8FAVwgknV9lChoBmgJaA9DCJD11OorLmVAlIaUUpRoFU3oA2gWR0COk63w1BMSdX2UKGgGaAloD0MIHqZ9c3/UVUCUhpRSlGgVTegDaBZHQI6YQ3gk1Mx1fZQoaAZoCWgPQwgqATEJl6hiQJSGlFKUaBVN6ANoFkdAjpjZ5qubJHV9lChoBmgJaA9DCAnh0cYR4l9AlIaUUpRoFU3oA2gWR0COnwoXsPatdX2UKGgGaAloD0MISUp6GFp+XECUhpRSlGgVTegDaBZHQI6jJEF4cFR1fZQoaAZoCWgPQwgYCW05F1hiQJSGlFKUaBVN6ANoFkdAju4/bsWweXV9lChoBmgJaA9DCJaX/E9+CWBAlIaUUpRoFU3oA2gWR0CPCOuGKyfMdX2UKGgGaAloD0MIPWTKh6C0XUCUhpRSlGgVTegDaBZHQI8knoicG1R1fZQoaAZoCWgPQwgCK4cW2WtfQJSGlFKUaBVN6ANoFkdAjygFl9SdfHV9lChoBmgJaA9DCBCSBUzgIGZAlIaUUpRoFU3oA2gWR0CPKhnxri2ldX2UKGgGaAloD0MIRuwTQDFiYkCUhpRSlGgVTegDaBZHQI8sjZQHiWF1fZQoaAZoCWgPQwh7aB8r+L1kQJSGlFKUaBVN6ANoFkdAjyzJkf9xZXV9lChoBmgJaA9DCNQnucMmXWBAlIaUUpRoFU3oA2gWR0CPN6WWyC4CdX2UKGgGaAloD0MIuhCrP8JDYUCUhpRSlGgVTegDaBZHQI86WSt/4It1fZQoaAZoCWgPQwgAkBMmDIdhQJSGlFKUaBVN6ANoFkdAjzrYaHbh33V9lChoBmgJaA9DCL5nJEIjGGZAlIaUUpRoFU3oA2gWR0CPQmdhAnlXdX2UKGgGaAloD0MIdVYL7LGpZkCUhpRSlGgVTegDaBZHQI9G+dCmdiF1fZQoaAZoCWgPQwhdixag7eViQJSGlFKUaBVN6ANoFkdAj0txFAmiQHV9lChoBmgJaA9DCN154jlbPlhAlIaUUpRoFU3oA2gWR0CPS/ugpSaWdX2UKGgGaAloD0MIkWKARBNHWUCUhpRSlGgVTegDaBZHQI9R1GZuyeJ1fZQoaAZoCWgPQwjjxi3m5/lYQJSGlFKUaBVN6ANoFkdAj1W4RmK64HV9lChoBmgJaA9DCFlS7j7H0WJAlIaUUpRoFU3oA2gWR0CPapn9NvfkdX2UKGgGaAloD0MIQGzp0VRhZUCUhpRSlGgVTegDaBZHQI+Fm+yquKZ1fZQoaAZoCWgPQwjBjv8CQbdcQJSGlFKUaBVN6ANoFkdAj6TeEAYHgXV9lChoBmgJaA9DCKZgjbPpAGNAlIaUUpRoFU3oA2gWR0CPqKPNmlImdX2UKGgGaAloD0MIg1K0cq+FYECUhpRSlGgVTegDaBZHQI+q5z/6wdN1fZQoaAZoCWgPQwgMeQQ30g1hQJSGlFKUaBVN6ANoFkdAj63DR+jM3nV9lChoBmgJaA9DCKVN1T0yyGRAlIaUUpRoFU3oA2gWR0CPrg1G9YfXdX2UKGgGaAloD0MI1xTI7Cw4XECUhpRSlGgVTegDaBZHQI+6cjxCpm51fZQoaAZoCWgPQwhvg9pv7UZkQJSGlFKUaBVN6ANoFkdAj71zp5eJHnV9lChoBmgJaA9DCGmrksg+QmFAlIaUUpRoFU3oA2gWR0CPvfq7AckudX2UKGgGaAloD0MIrIvbaIANYUCUhpRSlGgVTegDaBZHQI/GUhib2Dh1fZQoaAZoCWgPQwjCwHPv4c9iQJSGlFKUaBVN6ANoFkdAj8sZAIIF/3V9lChoBmgJaA9DCCV32ERm2WVAlIaUUpRoFU3oA2gWR0CPz/Hn2ZiNdX2UKGgGaAloD0MI3bbvUX8vTUCUhpRSlGgVTegDaBZHQI/Qj3Ehq0t1fZQoaAZoCWgPQwjmQA+17TNpQJSGlFKUaBVNrQNoFkdAj9RxU3n6mHV9lChoBmgJaA9DCOVFJuDXNF5AlIaUUpRoFU3oA2gWR0CP11A5aNdadWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 186, "n_steps": 2048, "gamma": 0.998, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65bf792766e1110eb0c1a8fd84e048a978d2d74fe9f24031de44a7e14b8fb2cf
3
+ size 147425
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff4910d7dc0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff4910d7e50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff4910d7ee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff4910d7f70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff49105b040>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff49105b0d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff49105b160>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff49105b1f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff49105b280>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff49105b310>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff49105b3a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff49105b430>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7ff4910ceea0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673426543513760210,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFr0kr7D23M7UNTeO036F7mjZAC9OoSxNQAAgD8AAIA/hrUVvjgv2bsUIx69PkBBu+CLIT1QDyQ8AACAPwAAgD+AdJy94diZuiajgDsqHcQ4KImKO0J7GboAAIA/AACAPzP7BjspPAi63mNHOVeimzRQPAs7RexluAAAgD8AAIA/jR25PXuejLrGDY270oWrN77+ULulyAC3AACAPwAAgD822nO+SjYKvdgHy7xx60q7WadwPmYAGDwAAIA/AACAPw28yj0UQIu6wrXDuEDnSbZJG9Q6eAbiNwAAgD8AAIA/zWqwvisl5D07gn09RBBjvjZIur26+KM8AAAAAAAAAAB66q4+F3+3PmDt1b2l7yG+S8gyPRsQcb0AAAAAAAAAADomUr7I6cA7iAGWuqACHjjoB0u9GsitOQAAgD8AAIA/zUzpvRR29T1+F749Tq8KvqzIoby2KpK9AAAAAAAAAABmILa8IViHPV7RX7ym9Mq9d3hEPbRugbwAAAAAAAAAAMD8q717spa6oq16uxFvoze20zw6Fe0HtwAAgD8AAIA/TmGsvpRxWL1apTE6rKYKOVqrhT4PI4q5AACAPwAAgD8NIoM9FGCJuk6v/juOBhm2joE8u843CLUAAIA/AACAP2a/k76hmVE+rRpAPv3M6L3o/uk7aZuhPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4UVfQZowXUCUhpRSlIwBbJRN6AOMAXSUR0CMIXrfLs8gdX2UKGgGaAloD0MIisxc4PJ8YECUhpRSlGgVTegDaBZHQIxcNtfoicJ1fZQoaAZoCWgPQwjVWpiFdsVTQJSGlFKUaBVN6ANoFkdAjIcSrPt2LnV9lChoBmgJaA9DCHf1KjI6d1dAlIaUUpRoFU3oA2gWR0CMizp7kXDWdX2UKGgGaAloD0MIut3LfXLyXUCUhpRSlGgVTegDaBZHQIym73wkPc11fZQoaAZoCWgPQwjByqFFttdkQJSGlFKUaBVNdgNoFkdAjKfGXw9aEHV9lChoBmgJaA9DCK8mT1lNM11AlIaUUpRoFU3oA2gWR0CMqysq8UVSdX2UKGgGaAloD0MIFFlrKLVgXkCUhpRSlGgVTegDaBZHQIyv3f8/D+B1fZQoaAZoCWgPQwhjgEQTqHphQJSGlFKUaBVN6ANoFkdAjLAmois4k3V9lChoBmgJaA9DCMoyxLGuAmJAlIaUUpRoFU3oA2gWR0CMu9hOxjaxdX2UKGgGaAloD0MItHQF24j/WkCUhpRSlGgVTegDaBZHQIy+1R77bcp1fZQoaAZoCWgPQwhWt3pOelJYQJSGlFKUaBVN6ANoFkdAjL9gDA8B/HV9lChoBmgJaA9DCDZy3ZTyUVhAlIaUUpRoFU3oA2gWR0CMzbMRHww1dX2UKGgGaAloD0MISYRGsHGqXkCUhpRSlGgVTegDaBZHQIzS25BkZrJ1fZQoaAZoCWgPQwi5qBYRRT9iQJSGlFKUaBVN6ANoFkdAjNMKV6eGwnV9lChoBmgJaA9DCO0seqcCKVxAlIaUUpRoFU3oA2gWR0CM06cWj45+dX2UKGgGaAloD0MIfSO6Z10IXECUhpRSlGgVTegDaBZHQIzaPTAnDzl1fZQoaAZoCWgPQwjPMotQ7DViQJSGlFKUaBVN6ANoFkdAjN59NFjNIXV9lChoBmgJaA9DCJzgm6bPRkHAlIaUUpRoFU0LAWgWR0CM9RNxEORUdX2UKGgGaAloD0MInl+UoL+/WkCUhpRSlGgVTegDaBZHQI0OIfuCwr11fZQoaAZoCWgPQwj+uP3yyS5eQJSGlFKUaBVN6ANoFkdAjRLfuLJjlXV9lChoBmgJaA9DCMaIRKFl5VZAlIaUUpRoFU3oA2gWR0CNM5XkHUtqdX2UKGgGaAloD0MIQInPnWDNZECUhpRSlGgVTegDaBZHQI00hekYXO51fZQoaAZoCWgPQwgPDCB8KD5gQJSGlFKUaBVN6ANoFkdAjTgrFwT/Q3V9lChoBmgJaA9DCB9Mio9PyC9AlIaUUpRoFU0UAWgWR0CNOoVIqbz9dX2UKGgGaAloD0MIm1lLAemjYkCUhpRSlGgVTegDaBZHQI09TTjNpud1fZQoaAZoCWgPQwgepRKeUAViQJSGlFKUaBVN6ANoFkdAjT2PsAvL5nV9lChoBmgJaA9DCIE9JlIap2RAlIaUUpRoFU3oA2gWR0CNSa3ZPEbYdX2UKGgGaAloD0MIJlXbTXDGYUCUhpRSlGgVTegDaBZHQI1MlFlTWG11fZQoaAZoCWgPQwjQfqSIDPZgQJSGlFKUaBVN6ANoFkdAjU0e5nUUf3V9lChoBmgJaA9DCCBfQgWHOWNAlIaUUpRoFU3oA2gWR0CNWlkH2RJVdX2UKGgGaAloD0MIJJnVO1wgYkCUhpRSlGgVTegDaBZHQI1fZ4ptrKx1fZQoaAZoCWgPQwjDR8SUSINeQJSGlFKUaBVN6ANoFkdAjV/8GLUCrHV9lChoBmgJaA9DCF2MgXUcYmBAlIaUUpRoFU3oA2gWR0CNZkp3HJcPdX2UKGgGaAloD0MIfCk8aHZMXUCUhpRSlGgVTegDaBZHQI1qQ9X9zfd1fZQoaAZoCWgPQwgcYOY7eHhkQJSGlFKUaBVN6ANoFkdAjbZGx2SuAHV9lChoBmgJaA9DCHBE96xrdlxAlIaUUpRoFU3oA2gWR0CN0MKb8WKudX2UKGgGaAloD0MI6pEGt7UcZUCUhpRSlGgVTegDaBZHQI3vKIWP91l1fZQoaAZoCWgPQwj3WWWmtN9UQJSGlFKUaBVN6ANoFkdAjfAOaWom5XV9lChoBmgJaA9DCJYkz/V9PlxAlIaUUpRoFU3oA2gWR0CN84mb9ZRsdX2UKGgGaAloD0MIhbGFIAdVSUCUhpRSlGgVTegDaBZHQI31kFfReC11fZQoaAZoCWgPQwg429yYnopjQJSGlFKUaBVN6ANoFkdAjfgYcvM8o3V9lChoBmgJaA9DCMU9lj50d1hAlIaUUpRoFU3oA2gWR0CN+F3K0UoKdX2UKGgGaAloD0MIM6g2OJEvYECUhpRSlGgVTegDaBZHQI4DHc+JP691fZQoaAZoCWgPQwiAKm7cYrpcQJSGlFKUaBVN6ANoFkdAjgXXN1QqJHV9lChoBmgJaA9DCCY1tAHYQlBAlIaUUpRoFU3oA2gWR0COBmQRwqAjdX2UKGgGaAloD0MIxM9/D16LMkCUhpRSlGgVTQ4BaBZHQI4OQ0VJtix1fZQoaAZoCWgPQwg1Y9F09olhQJSGlFKUaBVN6ANoFkdAjhLcTrVvuXV9lChoBmgJaA9DCH5Rgv5CG2VAlIaUUpRoFU3oA2gWR0COFyS00FbFdX2UKGgGaAloD0MIM2spIG1BZECUhpRSlGgVTegDaBZHQI4XsfA9FF51fZQoaAZoCWgPQwiUowBRMLxjQJSGlFKUaBVN6ANoFkdAjh3c+aBqbnV9lChoBmgJaA9DCPoLPWL0RVxAlIaUUpRoFU3oA2gWR0COIeIcBEKFdX2UKGgGaAloD0MIYYpyaXx6YECUhpRSlGgVTegDaBZHQI42nuPV/c51fZQoaAZoCWgPQwgCZVOucH5mQJSGlFKUaBVN6ANoFkdAjlE+x4Y773V9lChoBmgJaA9DCOWdQxmq0mFAlIaUUpRoFU3oA2gWR0COb/VR1oxpdX2UKGgGaAloD0MI7Z48LNQdXECUhpRSlGgVTegDaBZHQI5zkg6ltTF1fZQoaAZoCWgPQwhyxFp8CohfQJSGlFKUaBVN6ANoFkdAjnWumixmkHV9lChoBmgJaA9DCM8wtaWOnWJAlIaUUpRoFU3oA2gWR0COeEMMqjJudX2UKGgGaAloD0MIofXwZaIgZECUhpRSlGgVTegDaBZHQI54hV2icoZ1fZQoaAZoCWgPQwj+KOrMPSJcQJSGlFKUaBVN6ANoFkdAjoOWDHwPRXV9lChoBmgJaA9DCI0mF2Ng4mJAlIaUUpRoFU3oA2gWR0COhl101ZTydX2UKGgGaAloD0MIStBf6JEzZkCUhpRSlGgVTegDaBZHQI6G4PI4lyB1fZQoaAZoCWgPQwgi/8wgvhxlQJSGlFKUaBVN6ANoFkdAjo8FAVwgknV9lChoBmgJaA9DCJD11OorLmVAlIaUUpRoFU3oA2gWR0COk63w1BMSdX2UKGgGaAloD0MIHqZ9c3/UVUCUhpRSlGgVTegDaBZHQI6YQ3gk1Mx1fZQoaAZoCWgPQwgqATEJl6hiQJSGlFKUaBVN6ANoFkdAjpjZ5qubJHV9lChoBmgJaA9DCAnh0cYR4l9AlIaUUpRoFU3oA2gWR0COnwoXsPatdX2UKGgGaAloD0MISUp6GFp+XECUhpRSlGgVTegDaBZHQI6jJEF4cFR1fZQoaAZoCWgPQwgYCW05F1hiQJSGlFKUaBVN6ANoFkdAju4/bsWweXV9lChoBmgJaA9DCJaX/E9+CWBAlIaUUpRoFU3oA2gWR0CPCOuGKyfMdX2UKGgGaAloD0MIPWTKh6C0XUCUhpRSlGgVTegDaBZHQI8knoicG1R1fZQoaAZoCWgPQwgCK4cW2WtfQJSGlFKUaBVN6ANoFkdAjygFl9SdfHV9lChoBmgJaA9DCBCSBUzgIGZAlIaUUpRoFU3oA2gWR0CPKhnxri2ldX2UKGgGaAloD0MIRuwTQDFiYkCUhpRSlGgVTegDaBZHQI8sjZQHiWF1fZQoaAZoCWgPQwh7aB8r+L1kQJSGlFKUaBVN6ANoFkdAjyzJkf9xZXV9lChoBmgJaA9DCNQnucMmXWBAlIaUUpRoFU3oA2gWR0CPN6WWyC4CdX2UKGgGaAloD0MIuhCrP8JDYUCUhpRSlGgVTegDaBZHQI86WSt/4It1fZQoaAZoCWgPQwgAkBMmDIdhQJSGlFKUaBVN6ANoFkdAjzrYaHbh33V9lChoBmgJaA9DCL5nJEIjGGZAlIaUUpRoFU3oA2gWR0CPQmdhAnlXdX2UKGgGaAloD0MIdVYL7LGpZkCUhpRSlGgVTegDaBZHQI9G+dCmdiF1fZQoaAZoCWgPQwhdixag7eViQJSGlFKUaBVN6ANoFkdAj0txFAmiQHV9lChoBmgJaA9DCN154jlbPlhAlIaUUpRoFU3oA2gWR0CPS/ugpSaWdX2UKGgGaAloD0MIkWKARBNHWUCUhpRSlGgVTegDaBZHQI9R1GZuyeJ1fZQoaAZoCWgPQwjjxi3m5/lYQJSGlFKUaBVN6ANoFkdAj1W4RmK64HV9lChoBmgJaA9DCFlS7j7H0WJAlIaUUpRoFU3oA2gWR0CPapn9NvfkdX2UKGgGaAloD0MIQGzp0VRhZUCUhpRSlGgVTegDaBZHQI+Fm+yquKZ1fZQoaAZoCWgPQwjBjv8CQbdcQJSGlFKUaBVN6ANoFkdAj6TeEAYHgXV9lChoBmgJaA9DCKZgjbPpAGNAlIaUUpRoFU3oA2gWR0CPqKPNmlImdX2UKGgGaAloD0MIg1K0cq+FYECUhpRSlGgVTegDaBZHQI+q5z/6wdN1fZQoaAZoCWgPQwgMeQQ30g1hQJSGlFKUaBVN6ANoFkdAj63DR+jM3nV9lChoBmgJaA9DCKVN1T0yyGRAlIaUUpRoFU3oA2gWR0CPrg1G9YfXdX2UKGgGaAloD0MI1xTI7Cw4XECUhpRSlGgVTegDaBZHQI+6cjxCpm51fZQoaAZoCWgPQwhvg9pv7UZkQJSGlFKUaBVN6ANoFkdAj71zp5eJHnV9lChoBmgJaA9DCGmrksg+QmFAlIaUUpRoFU3oA2gWR0CPvfq7AckudX2UKGgGaAloD0MIrIvbaIANYUCUhpRSlGgVTegDaBZHQI/GUhib2Dh1fZQoaAZoCWgPQwjCwHPv4c9iQJSGlFKUaBVN6ANoFkdAj8sZAIIF/3V9lChoBmgJaA9DCCV32ERm2WVAlIaUUpRoFU3oA2gWR0CPz/Hn2ZiNdX2UKGgGaAloD0MI3bbvUX8vTUCUhpRSlGgVTegDaBZHQI/Qj3Ehq0t1fZQoaAZoCWgPQwjmQA+17TNpQJSGlFKUaBVNrQNoFkdAj9RxU3n6mHV9lChoBmgJaA9DCOVFJuDXNF5AlIaUUpRoFU3oA2gWR0CP11A5aNdadWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 186,
80
+ "n_steps": 2048,
81
+ "gamma": 0.998,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 128,
87
+ "n_epochs": 6,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:713dac24a9ca925f8cd180105534ad41d30119ad8571560ff43ea0a39458a7c5
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95559cab80cd7d9dedd9d030e6e14d49b3cc702fd2530b37c5e6492ebdb172a6
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (254 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 222.01719370522923, "std_reward": 29.410198873532405, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-11T08:59:34.864769"}