Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language: en
|
4 |
+
tags:
|
5 |
+
- deberta-v3-large
|
6 |
+
- text-classification
|
7 |
+
- nli
|
8 |
+
- natural-language-inference
|
9 |
+
- multitask
|
10 |
+
- multi-task
|
11 |
+
- pipeline
|
12 |
+
- extreme-multi-task
|
13 |
+
- extreme-mtl
|
14 |
+
- tasksource
|
15 |
+
- zero-shot
|
16 |
+
- rlhf
|
17 |
+
pipeline_tag: zero-shot-classification
|
18 |
+
datasets:
|
19 |
+
- glue
|
20 |
+
- super_glue
|
21 |
+
- anli
|
22 |
+
- metaeval/babi_nli
|
23 |
+
- sick
|
24 |
+
- snli
|
25 |
+
- scitail
|
26 |
+
- hans
|
27 |
+
- alisawuffles/WANLI
|
28 |
+
- metaeval/recast
|
29 |
+
- sileod/probability_words_nli
|
30 |
+
- joey234/nan-nli
|
31 |
+
- pietrolesci/nli_fever
|
32 |
+
- pietrolesci/breaking_nli
|
33 |
+
- pietrolesci/conj_nli
|
34 |
+
- pietrolesci/fracas
|
35 |
+
- pietrolesci/dialogue_nli
|
36 |
+
- pietrolesci/mpe
|
37 |
+
- pietrolesci/dnc
|
38 |
+
- pietrolesci/gpt3_nli
|
39 |
+
- pietrolesci/recast_white
|
40 |
+
- pietrolesci/joci
|
41 |
+
- martn-nguyen/contrast_nli
|
42 |
+
- pietrolesci/robust_nli
|
43 |
+
- pietrolesci/robust_nli_is_sd
|
44 |
+
- pietrolesci/robust_nli_li_ts
|
45 |
+
- pietrolesci/gen_debiased_nli
|
46 |
+
- pietrolesci/add_one_rte
|
47 |
+
- metaeval/imppres
|
48 |
+
- pietrolesci/glue_diagnostics
|
49 |
+
- hlgd
|
50 |
+
- paws
|
51 |
+
- quora
|
52 |
+
- medical_questions_pairs
|
53 |
+
- conll2003
|
54 |
+
- Anthropic/hh-rlhf
|
55 |
+
- Anthropic/model-written-evals
|
56 |
+
- truthful_qa
|
57 |
+
- nightingal3/fig-qa
|
58 |
+
- tasksource/bigbench
|
59 |
+
- bigbench
|
60 |
+
- blimp
|
61 |
+
- cos_e
|
62 |
+
- cosmos_qa
|
63 |
+
- dream
|
64 |
+
- openbookqa
|
65 |
+
- qasc
|
66 |
+
- quartz
|
67 |
+
- quail
|
68 |
+
- head_qa
|
69 |
+
- sciq
|
70 |
+
- social_i_qa
|
71 |
+
- wiki_hop
|
72 |
+
- wiqa
|
73 |
+
- piqa
|
74 |
+
- hellaswag
|
75 |
+
- pkavumba/balanced-copa
|
76 |
+
- 12ml/e-CARE
|
77 |
+
- art
|
78 |
+
- tasksource/mmlu
|
79 |
+
- winogrande
|
80 |
+
- codah
|
81 |
+
- ai2_arc
|
82 |
+
- definite_pronoun_resolution
|
83 |
+
- swag
|
84 |
+
- math_qa
|
85 |
+
- metaeval/utilitarianism
|
86 |
+
- mteb/amazon_counterfactual
|
87 |
+
- SetFit/insincere-questions
|
88 |
+
- SetFit/toxic_conversations
|
89 |
+
- turingbench/TuringBench
|
90 |
+
- trec
|
91 |
+
- tals/vitaminc
|
92 |
+
- hope_edi
|
93 |
+
- strombergnlp/rumoureval_2019
|
94 |
+
- ethos
|
95 |
+
- tweet_eval
|
96 |
+
- discovery
|
97 |
+
- pragmeval
|
98 |
+
- silicone
|
99 |
+
- lex_glue
|
100 |
+
- papluca/language-identification
|
101 |
+
- imdb
|
102 |
+
- rotten_tomatoes
|
103 |
+
- ag_news
|
104 |
+
- yelp_review_full
|
105 |
+
- financial_phrasebank
|
106 |
+
- poem_sentiment
|
107 |
+
- dbpedia_14
|
108 |
+
- amazon_polarity
|
109 |
+
- app_reviews
|
110 |
+
- hate_speech18
|
111 |
+
- sms_spam
|
112 |
+
- humicroedit
|
113 |
+
- snips_built_in_intents
|
114 |
+
- banking77
|
115 |
+
- hate_speech_offensive
|
116 |
+
- yahoo_answers_topics
|
117 |
+
- pacovaldez/stackoverflow-questions
|
118 |
+
- zapsdcn/hyperpartisan_news
|
119 |
+
- zapsdcn/sciie
|
120 |
+
- zapsdcn/citation_intent
|
121 |
+
- go_emotions
|
122 |
+
- scicite
|
123 |
+
- liar
|
124 |
+
- relbert/lexical_relation_classification
|
125 |
+
- metaeval/linguisticprobing
|
126 |
+
- metaeval/crowdflower
|
127 |
+
- metaeval/ethics
|
128 |
+
- emo
|
129 |
+
- google_wellformed_query
|
130 |
+
- tweets_hate_speech_detection
|
131 |
+
- has_part
|
132 |
+
- wnut_17
|
133 |
+
- ncbi_disease
|
134 |
+
- acronym_identification
|
135 |
+
- jnlpba
|
136 |
+
- species_800
|
137 |
+
- SpeedOfMagic/ontonotes_english
|
138 |
+
- blog_authorship_corpus
|
139 |
+
- launch/open_question_type
|
140 |
+
- health_fact
|
141 |
+
- commonsense_qa
|
142 |
+
- mc_taco
|
143 |
+
- ade_corpus_v2
|
144 |
+
- prajjwal1/discosense
|
145 |
+
- circa
|
146 |
+
- YaHi/EffectiveFeedbackStudentWriting
|
147 |
+
- Ericwang/promptSentiment
|
148 |
+
- Ericwang/promptNLI
|
149 |
+
- Ericwang/promptSpoke
|
150 |
+
- Ericwang/promptProficiency
|
151 |
+
- Ericwang/promptGrammar
|
152 |
+
- Ericwang/promptCoherence
|
153 |
+
- PiC/phrase_similarity
|
154 |
+
- copenlu/scientific-exaggeration-detection
|
155 |
+
- quarel
|
156 |
+
- mwong/fever-evidence-related
|
157 |
+
- numer_sense
|
158 |
+
- dynabench/dynasent
|
159 |
+
- raquiba/Sarcasm_News_Headline
|
160 |
+
- sem_eval_2010_task_8
|
161 |
+
- demo-org/auditor_review
|
162 |
+
- medmcqa
|
163 |
+
- aqua_rat
|
164 |
+
- RuyuanWan/Dynasent_Disagreement
|
165 |
+
- RuyuanWan/Politeness_Disagreement
|
166 |
+
- RuyuanWan/SBIC_Disagreement
|
167 |
+
- RuyuanWan/SChem_Disagreement
|
168 |
+
- RuyuanWan/Dilemmas_Disagreement
|
169 |
+
- lucasmccabe/logiqa
|
170 |
+
- wiki_qa
|
171 |
+
- metaeval/cycic_classification
|
172 |
+
- metaeval/cycic_multiplechoice
|
173 |
+
- metaeval/sts-companion
|
174 |
+
- metaeval/commonsense_qa_2.0
|
175 |
+
- metaeval/lingnli
|
176 |
+
- metaeval/monotonicity-entailment
|
177 |
+
- metaeval/arct
|
178 |
+
- metaeval/scinli
|
179 |
+
- metaeval/naturallogic
|
180 |
+
- onestop_qa
|
181 |
+
- demelin/moral_stories
|
182 |
+
- corypaik/prost
|
183 |
+
- aps/dynahate
|
184 |
+
- metaeval/syntactic-augmentation-nli
|
185 |
+
- metaeval/autotnli
|
186 |
+
- lasha-nlp/CONDAQA
|
187 |
+
- openai/webgpt_comparisons
|
188 |
+
- Dahoas/synthetic-instruct-gptj-pairwise
|
189 |
+
- metaeval/scruples
|
190 |
+
- metaeval/wouldyourather
|
191 |
+
- sileod/attempto-nli
|
192 |
+
- metaeval/defeasible-nli
|
193 |
+
- metaeval/help-nli
|
194 |
+
- metaeval/nli-veridicality-transitivity
|
195 |
+
- metaeval/natural-language-satisfiability
|
196 |
+
- metaeval/lonli
|
197 |
+
- metaeval/dadc-limit-nli
|
198 |
+
- ColumbiaNLP/FLUTE
|
199 |
+
- metaeval/strategy-qa
|
200 |
+
- openai/summarize_from_feedback
|
201 |
+
- metaeval/folio
|
202 |
+
- metaeval/tomi-nli
|
203 |
+
- metaeval/avicenna
|
204 |
+
- stanfordnlp/SHP
|
205 |
+
- GBaker/MedQA-USMLE-4-options-hf
|
206 |
+
- sileod/wikimedqa
|
207 |
+
- declare-lab/cicero
|
208 |
+
- amydeng2000/CREAK
|
209 |
+
- metaeval/mutual
|
210 |
+
- inverse-scaling/NeQA
|
211 |
+
- inverse-scaling/quote-repetition
|
212 |
+
- inverse-scaling/redefine-math
|
213 |
+
- metaeval/puzzte
|
214 |
+
- metaeval/implicatures
|
215 |
+
- race
|
216 |
+
- metaeval/spartqa-yn
|
217 |
+
- metaeval/spartqa-mchoice
|
218 |
+
- metaeval/temporal-nli
|
219 |
+
metrics:
|
220 |
+
- accuracy
|
221 |
+
library_name: transformers
|
222 |
+
---
|
223 |
+
|
224 |
+
# Model Card for DeBERTa-v3-base-tasksource-nli
|
225 |
+
|
226 |
+
DeBERTa-v3-large fine-tuned with multi-task learning on 520 tasks of the [tasksource collection](https://github.com/sileod/tasksource/)
|
227 |
+
You can further fine-tune this model to use it for any classification or multiple-choice task.
|
228 |
+
This checkpoint has strong zero-shot validation performance on many tasks (e.g. 77% on WNLI).
|
229 |
+
The untuned model CLS embedding also has strong linear probing performance (90% on MNLI), due to the multitask training.
|
230 |
+
|
231 |
+
This is the shared model with the MNLI classifier on top. Its encoder was trained on many datasets including bigbench, Anthropic rlhf, anli... alongside many NLI and classification tasks with a SequenceClassification heads while using only one shared encoder.
|
232 |
+
Each task had a specific CLS embedding, which is dropped 10% of the time to facilitate model use without it. All multiple-choice model used the same classification layers. For classification tasks, models shared weights if their labels matched.
|
233 |
+
The number of examples per task was capped to 64k. The model was trained for 45k steps with a batch size of 384, and a peak learning rate of 2e-5.
|
234 |
+
|
235 |
+
|
236 |
+
tasksource training code: https://colab.research.google.com/drive/1iB4Oxl9_B5W3ZDzXoWJN-olUbqLBxgQS?usp=sharing
|
237 |
+
|
238 |
+
### Software
|
239 |
+
https://github.com/sileod/tasksource/ \
|
240 |
+
https://github.com/sileod/tasknet/ \
|
241 |
+
Training took 6 days on Nvidia A100 40GB gpu.
|
242 |
+
|
243 |
+
|
244 |
+
# Citation
|
245 |
+
|
246 |
+
More details on this [article:](https://arxiv.org/abs/2301.05948)
|
247 |
+
```bib
|
248 |
+
@article{sileo2023tasksource,
|
249 |
+
title={tasksource: Structured Dataset Preprocessing Annotations for Frictionless Extreme Multi-Task Learning and Evaluation},
|
250 |
+
author={Sileo, Damien},
|
251 |
+
url= {https://arxiv.org/abs/2301.05948},
|
252 |
+
journal={arXiv preprint arXiv:2301.05948},
|
253 |
+
year={2023}
|
254 |
+
}
|
255 |
+
```
|
256 |
+
|
257 |
+
# Loading a specific classifier
|
258 |
+
Classifiers for all tasks available. See https://huggingface.co/sileod/deberta-v3-large-tasksource-adapters
|
259 |
+
|
260 |
+
|
261 |
+
# Model Card Contact
|
262 |
+
|
263 |
+
damien.sileo@inria.fr
|
264 |
+
|
265 |
+
|
266 |
+
</details>
|