--- license: mit library_name: sklearn tags: - sklearn - skops - tabular-regression model_format: pickle model_file: lda_openai_clip_model.pkl widget: - structuredData: x0: - 0.0 x1: - 0.0 x10: - 0.0 x100: - 0.0 x101: - 0.0 x102: - 0.0 x103: - 0.0 x104: - 0.0 x105: - 0.0 x106: - 0.0 x107: - 0.0 x108: - 0.0 x109: - 0.0 x11: - 0.0 x110: - 0.0 x111: - 0.0 x112: - 0.0 x113: - 0.0 x114: - 0.0 x115: - 0.0 x116: - 0.0 x117: - 0.0 x118: - 0.0 x119: - 0.0 x12: - 0.0 x120: - 0.0 x121: - 0.0 x122: - 0.0 x123: - 0.0 x124: - 0.0 x125: - 0.0 x126: - 0.0 x127: - 0.0 x128: - 0.0 x129: - 0.0 x13: - 0.0 x130: - 0.0 x131: - 0.0 x132: - 0.0 x133: - 0.0 x134: - 0.0 x135: - 0.0 x136: - 0.0 x137: - 0.0 x138: - 0.0 x139: - 0.0 x14: - 0.0 x140: - 0.0 x141: - 0.0 x142: - 0.0 x143: - 0.0 x144: - 0.0 x145: - 0.0 x146: - 0.0 x147: - 0.0 x148: - 0.0 x149: - 0.0 x15: - 0.0 x150: - 0.0 x151: - 0.0 x152: - 0.0 x153: - 0.0 x154: - 0.0 x155: - 0.0 x156: - 0.0 x157: - 0.0 x158: - 0.0 x159: - 0.0 x16: - 0.0 x160: - 0.0 x161: - 0.0 x162: - 0.0 x163: - 0.0 x164: - 0.0 x165: - 0.0 x166: - 0.0 x167: - 0.0 x168: - 0.0 x169: - 0.0 x17: - 0.0 x170: - 0.0 x171: - 0.0 x172: - 0.0 x173: - 0.0 x174: - 0.0 x175: - 0.0 x176: - 0.0 x177: - 0.0 x178: - 0.0 x179: - 0.0 x18: - 0.0 x180: - 0.0 x181: - 0.0 x182: - 0.0 x183: - 0.0 x184: - 0.0 x185: - 0.0 x186: - 0.0 x187: - 0.0 x188: - 0.0 x189: - 0.0 x19: - 0.0 x190: - 0.0 x191: - 0.0 x192: - 0.0 x193: - 0.0 x194: - 0.0 x195: - 0.0 x196: - 0.0 x197: - 0.0 x198: - 0.0 x199: - 0.0 x2: - 0.0 x20: - 0.0 x200: - 0.0 x201: - 0.0 x202: - 0.0 x203: - 0.0 x204: - 0.0 x205: - 0.0 x206: - 0.0 x207: - 0.0 x208: - 0.0 x209: - 0.0 x21: - 0.0 x210: - 0.0 x211: - 0.0 x212: - 0.0 x213: - 0.0 x214: - 0.0 x215: - 0.0 x216: - 0.0 x217: - 0.0 x218: - 0.0 x219: - 0.0 x22: - 0.0 x220: - 0.0 x221: - 0.0 x222: - 0.0 x223: - 0.0 x224: - 0.0 x225: - 0.0 x226: - 0.0 x227: - 0.0 x228: - 0.0 x229: - 0.0 x23: - 0.0 x230: - 0.0 x231: - 0.0 x232: - 0.0 x233: - 0.0 x234: - 0.0 x235: - 0.0 x236: - 0.0 x237: - 0.0 x238: - 0.0 x239: - 0.0 x24: - 0.0 x240: - 0.0 x241: - 0.0 x242: - 0.0 x243: - 0.0 x244: - 0.0 x245: - 0.0 x246: - 0.0 x247: - 0.0 x248: - 0.0 x249: - 0.0 x25: - 0.0 x250: - 0.0 x251: - 0.0 x252: - 0.0 x253: - 0.0 x254: - 0.0 x255: - 0.0 x256: - 0.0 x257: - 0.0 x258: - 0.0 x259: - 0.0 x26: - 0.0 x260: - 0.0 x261: - 0.0 x262: - 0.0 x263: - 0.0 x264: - 0.0 x265: - 0.0 x266: - 0.0 x267: - 0.0 x268: - 0.0 x269: - 0.0 x27: - 0.0 x270: - 0.0 x271: - 0.0 x272: - 0.0 x273: - 0.0 x274: - 0.0 x275: - 0.0 x276: - 0.0 x277: - 0.0 x278: - 0.0 x279: - 0.0 x28: - 0.0 x280: - 0.0 x281: - 0.0 x282: - 0.0 x283: - 0.0 x284: - 0.0 x285: - 0.0 x286: - 0.0 x287: - 0.0 x288: - 0.0 x289: - 0.0 x29: - 0.0 x290: - 0.0 x291: - 0.0 x292: - 0.0 x293: - 0.0 x294: - 0.0 x295: - 0.0 x296: - 0.0 x297: - 0.0 x298: - 0.0 x299: - 0.0 x3: - 0.0 x30: - 0.0 x300: - 0.0 x301: - 0.0 x302: - 0.0 x303: - 0.0 x304: - 0.0 x305: - 0.0 x306: - 0.0 x307: - 0.0 x308: - 0.0 x309: - 0.0 x31: - 0.0 x310: - 0.0 x311: - 0.0 x312: - 0.0 x313: - 0.0 x314: - 0.0 x315: - 0.0 x316: - 0.0 x317: - 0.0 x318: - 0.0 x319: - 0.0 x32: - 0.0 x320: - 0.0 x321: - 0.0 x322: - 0.0 x323: - 0.0 x324: - 0.0 x325: - 0.0 x326: - 0.0 x327: - 0.0 x328: - 0.0 x329: - 0.0 x33: - 0.0 x330: - 0.0 x331: - 0.0 x332: - 0.0 x333: - 0.0 x334: - 0.0 x335: - 0.0 x336: - 0.0 x337: - 0.0 x338: - 0.0 x339: - 0.0 x34: - 0.0 x340: - 0.0 x341: - 0.0 x342: - 0.0 x343: - 0.0 x344: - 0.0 x345: - 0.0 x346: - 0.0 x347: - 0.0 x348: - 0.0 x349: - 0.0 x35: - 0.0 x350: - 0.0 x351: - 0.0 x352: - 0.0 x353: - 0.0 x354: - 0.0 x355: - 0.0 x356: - 0.0 x357: - 0.0 x358: - 0.0 x359: - 0.0 x36: - 0.0 x360: - 0.0 x361: - 0.0 x362: - 0.0 x363: - 0.0 x364: - 0.0 x365: - 0.0 x366: - 0.0 x367: - 0.0 x368: - 0.0 x369: - 0.0 x37: - 0.0 x370: - 0.0 x371: - 0.0 x372: - 0.0 x373: - 0.0 x374: - 0.0 x375: - 0.0 x376: - 0.0 x377: - 0.0 x378: - 0.0 x379: - 0.0 x38: - 0.0 x380: - 0.0 x381: - 0.0 x382: - 0.0 x383: - 0.0 x384: - 0.0 x385: - 0.0 x386: - 0.0 x387: - 0.0 x388: - 0.0 x389: - 0.0 x39: - 0.0 x390: - 0.0 x391: - 0.0 x392: - 0.0 x393: - 0.0 x394: - 0.0 x395: - 0.0 x396: - 0.0 x397: - 0.0 x398: - 0.0 x399: - 0.0 x4: - 0.0 x40: - 0.0 x400: - 0.0 x401: - 0.0 x402: - 0.0 x403: - 0.0 x404: - 0.0 x405: - 0.0 x406: - 0.0 x407: - 0.0 x408: - 0.0 x409: - 0.0 x41: - 0.0 x410: - 0.0 x411: - 0.0 x412: - 0.0 x413: - 0.0 x414: - 0.0 x415: - 0.0 x416: - 0.0 x417: - 0.0 x418: - 0.0 x419: - 0.0 x42: - 0.0 x420: - 0.0 x421: - 0.0 x422: - 0.0 x423: - 0.0 x424: - 0.0 x425: - 0.0 x426: - 0.0 x427: - 0.0 x428: - 0.0 x429: - 0.0 x43: - 0.0 x430: - 0.0 x431: - 0.0 x432: - 0.0 x433: - 0.0 x434: - 0.0 x435: - 0.0 x436: - 0.0 x437: - 0.0 x438: - 0.0 x439: - 0.0 x44: - 0.0 x440: - 0.0 x441: - 0.0 x442: - 0.0 x443: - 0.0 x444: - 0.0 x445: - 0.0 x446: - 0.0 x447: - 0.0 x448: - 0.0 x449: - 0.0 x45: - 0.0 x450: - 0.0 x451: - 0.0 x452: - 0.0 x453: - 0.0 x454: - 0.0 x455: - 0.0 x456: - 0.0 x457: - 0.0 x458: - 0.0 x459: - 0.0 x46: - 0.0 x460: - 0.0 x461: - 0.0 x462: - 0.0 x463: - 0.0 x464: - 0.0 x465: - 0.0 x466: - 0.0 x467: - 0.0 x468: - 0.0 x469: - 0.0 x47: - 0.0 x470: - 0.0 x471: - 0.0 x472: - 0.0 x473: - 0.0 x474: - 0.0 x475: - 0.0 x476: - 0.0 x477: - 0.0 x478: - 0.0 x479: - 0.0 x48: - 0.0 x480: - 0.0 x481: - 0.0 x482: - 0.0 x483: - 0.0 x484: - 0.0 x485: - 0.0 x486: - 0.0 x487: - 0.0 x488: - 0.0 x489: - 0.0 x49: - 0.0 x490: - 0.0 x491: - 0.0 x492: - 0.0 x493: - 0.0 x494: - 0.0 x495: - 0.0 x496: - 0.0 x497: - 0.0 x498: - 0.0 x499: - 0.0 x5: - 0.0 x50: - 0.0 x500: - 0.0 x501: - 0.0 x502: - 0.0 x503: - 0.0 x504: - 0.0 x505: - 0.0 x506: - 0.0 x507: - 0.0 x508: - 0.0 x509: - 0.0 x51: - 0.0 x510: - 0.0 x511: - 0.0 x512: - 0.0 x513: - 0.0 x514: - 0.0 x515: - 0.0 x516: - 0.0 x517: - 0.0 x518: - 0.0 x519: - 0.0 x52: - 0.0 x520: - 0.0 x521: - 0.0 x522: - 0.0 x523: - 0.0 x524: - 0.0 x525: - 0.0 x526: - 0.0 x527: - 0.0 x528: - 0.0 x529: - 0.0 x53: - 0.0 x530: - 0.0 x531: - 0.0 x532: - 0.0 x533: - 0.0 x534: - 0.0 x535: - 0.0 x536: - 0.0 x537: - 0.0 x538: - 0.0 x539: - 0.0 x54: - 0.0 x540: - 0.0 x541: - 0.0 x542: - 0.0 x543: - 0.0 x544: - 0.0 x545: - 0.0 x546: - 0.0 x547: - 0.0 x548: - 0.0 x549: - 0.0 x55: - 0.0 x550: - 0.0 x551: - 0.0 x552: - 0.0 x553: - 0.0 x554: - 0.0 x555: - 0.0 x556: - 0.0 x557: - 0.0 x558: - 0.0 x559: - 0.0 x56: - 0.0 x560: - 0.0 x561: - 0.0 x562: - 0.0 x563: - 0.0 x564: - 0.0 x565: - 0.0 x566: - 0.0 x567: - 0.0 x568: - 0.0 x569: - 0.0 x57: - 0.0 x570: - 0.0 x571: - 0.0 x572: - 0.0 x573: - 0.0 x574: - 0.0 x575: - 0.0 x576: - 0.0 x577: - 0.0 x578: - 0.0 x579: - 0.0 x58: - 0.0 x580: - 0.0 x581: - 0.0 x582: - 0.0 x583: - 0.0 x584: - 0.0 x585: - 0.0 x586: - 0.0 x587: - 0.0 x588: - 0.0 x589: - 0.0 x59: - 0.0 x590: - 0.0 x591: - 0.0 x592: - 0.0 x593: - 0.0 x594: - 0.0 x595: - 0.0 x596: - 0.0 x597: - 0.0 x598: - 0.0 x599: - 0.0 x6: - 0.0 x60: - 0.0 x600: - 0.0 x601: - 0.0 x602: - 0.0 x603: - 0.0 x604: - 0.0 x605: - 0.0 x606: - 0.0 x607: - 0.0 x608: - 0.0 x609: - 0.0 x61: - 0.0 x610: - 0.0 x611: - 0.0 x612: - 0.0 x613: - 0.0 x614: - 0.0 x615: - 0.0 x616: - 0.0 x617: - 0.0 x618: - 0.0 x619: - 0.0 x62: - 0.0 x620: - 0.0 x621: - 0.0 x622: - 0.0 x623: - 0.0 x624: - 0.0 x625: - 0.0 x626: - 0.0 x627: - 0.0 x628: - 0.0 x629: - 0.0 x63: - 0.0 x630: - 0.0 x631: - 0.0 x632: - 0.0 x633: - 0.0 x634: - 0.0 x635: - 0.0 x636: - 0.0 x637: - 0.0 x638: - 0.0 x639: - 0.0 x64: - 0.0 x640: - 0.0 x641: - 0.0 x642: - 0.0 x643: - 0.0 x644: - 0.0 x645: - 0.0 x646: - 0.0 x647: - 0.0 x648: - 0.0 x649: - 0.0 x65: - 0.0 x650: - 0.0 x651: - 0.0 x652: - 0.0 x653: - 0.0 x654: - 0.0 x655: - 0.0 x656: - 0.0 x657: - 0.0 x658: - 0.0 x659: - 0.0 x66: - 0.0 x660: - 0.0 x661: - 0.0 x662: - 0.0 x663: - 0.0 x664: - 0.0 x665: - 0.0 x666: - 0.0 x667: - 0.0 x668: - 0.0 x669: - 0.0 x67: - 0.0 x670: - 0.0 x671: - 0.0 x672: - 0.0 x673: - 0.0 x674: - 0.0 x675: - 0.0 x676: - 0.0 x677: - 0.0 x678: - 0.0 x679: - 0.0 x68: - 0.0 x680: - 0.0 x681: - 0.0 x682: - 0.0 x683: - 0.0 x684: - 0.0 x685: - 0.0 x686: - 0.0 x687: - 0.0 x688: - 0.0 x689: - 0.0 x69: - 0.0 x690: - 0.0 x691: - 0.0 x692: - 0.0 x693: - 0.0 x694: - 0.0 x695: - 0.0 x696: - 0.0 x697: - 0.0 x698: - 0.0 x699: - 0.0 x7: - 0.0 x70: - 0.0 x700: - 0.0 x701: - 0.0 x702: - 0.0 x703: - 0.0 x704: - 0.0 x705: - 0.0 x706: - 0.0 x707: - 0.0 x708: - 0.0 x709: - 0.0 x71: - 0.0 x710: - 0.0 x711: - 0.0 x712: - 0.0 x713: - 0.0 x714: - 0.0 x715: - 0.0 x716: - 0.0 x717: - 0.0 x718: - 0.0 x719: - 0.0 x72: - 0.0 x720: - 0.0 x721: - 0.0 x722: - 0.0 x723: - 0.0 x724: - 0.0 x725: - 0.0 x726: - 0.0 x727: - 0.0 x728: - 0.0 x729: - 0.0 x73: - 0.0 x730: - 0.0 x731: - 0.0 x732: - 0.0 x733: - 0.0 x734: - 0.0 x735: - 0.0 x736: - 0.0 x737: - 0.0 x738: - 0.0 x739: - 0.0 x74: - 0.0 x740: - 0.0 x741: - 0.0 x742: - 0.0 x743: - 0.0 x744: - 0.0 x745: - 0.0 x746: - 0.0 x747: - 0.0 x748: - 0.0 x749: - 0.0 x75: - 0.0 x750: - 0.0 x751: - 0.0 x752: - 0.0 x753: - 0.0 x754: - 0.0 x755: - 0.0 x756: - 0.0 x757: - 0.0 x758: - 0.0 x759: - 0.0 x76: - 0.0 x760: - 0.0 x761: - 0.0 x762: - 0.0 x763: - 0.0 x764: - 0.0 x765: - 0.0 x766: - 0.0 x767: - 0.0 x77: - 0.0 x78: - 0.0 x79: - 0.0 x8: - 0.0 x80: - 0.0 x81: - 0.0 x82: - 0.0 x83: - 0.0 x84: - 0.0 x85: - 0.0 x86: - 0.0 x87: - 0.0 x88: - 0.0 x89: - 0.0 x9: - 0.0 x90: - 0.0 x91: - 0.0 x92: - 0.0 x93: - 0.0 x94: - 0.0 x95: - 0.0 x96: - 0.0 x97: - 0.0 x98: - 0.0 x99: - 0.0 --- # Model description 一个简易说的人脸识别baseline,使用openai/clip-vit-base-patch16 + LDA的策略 ## Intended uses & limitations 整体需要配合github对应的代码使用 ## Training Procedure [More Information Needed] ### Hyperparameters
Click to expand | Hyperparameter | Value | |----------------------|---------| | covariance_estimator | | | n_components | 512 | | priors | | | shrinkage | | | solver | svd | | store_covariance | False | | tol | 0.0001 |
### Model Plot
LinearDiscriminantAnalysis(n_components=512)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
## Evaluation Results [More Information Needed] # How to Get Started with the Model [More Information Needed] # Model Card Authors Cheng Li(https://github.com/LC1332) # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation @inproceedings{wang2018devil, title={The devil of face recognition is in the noise}, author={Wang, Fei and Chen, Liren and Li, Cheng and Huang, Shiyao and Chen, Yanjie and Qian, Chen and Loy, Chen Change}, booktitle={Proceedings of the European Conference on Computer Vision (ECCV)}, pages={765--780}, year={2018} }