File size: 12,523 Bytes
9eb5073 a186b0f 9eb5073 a186b0f 9eb5073 a186b0f 9eb5073 a186b0f 9eb5073 a186b0f 9eb5073 a186b0f 9eb5073 a186b0f 9eb5073 a186b0f 9eb5073 a186b0f 9eb5073 a186b0f 9eb5073 a186b0f 9eb5073 a186b0f 9eb5073 a186b0f 9eb5073 a186b0f 9eb5073 a186b0f 9eb5073 a186b0f 9eb5073 a186b0f 9eb5073 a186b0f 9eb5073 a186b0f 9eb5073 a186b0f 9eb5073 a186b0f 06c686a 9eb5073 06c686a 9eb5073 036228c 9eb5073 036228c 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 036228c 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 92bd889 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 06c686a 9eb5073 036228c 06c686a 92bd889 06c686a 92bd889 06c686a 9eb5073 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
---
base_model: aubmindlab/bert-base-arabertv02
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- loss:CosineSimilarityLoss
model-index:
- name: silma-embeddding-matryoshka-0.1
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
config: ar-ar
name: MTEB STS17 (ar-ar)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: pearson_cosine
value: 0.8412612492708037
name: Pearson Cosine
- type: spearman_cosine
value: 0.8424703763883515
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8118466522597414
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8261184409962614
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8138085140113648
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8317403450502965
name: Spearman Euclidean
- type: pearson_dot
value: 0.8412612546419626
name: Pearson Dot
- type: spearman_dot
value: 0.8425077492152536
name: Spearman Dot
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
config: en-ar
name: MTEB STS17 (en-ar)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: pearson_cosine
value: 0.43375293277885835
name: Pearson Cosine
- type: spearman_cosine
value: 0.42763149514327226
name: Spearman Cosine
- type: pearson_manhattan
value: 0.40498576814866555
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.40636693141664754
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.39625411905897395
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.3926727199746294
name: Spearman Euclidean
- type: pearson_dot
value: 0.4337529078998193
name: Pearson Dot
- type: spearman_dot
value: 0.42763149514327226
name: Spearman Dot
license: apache-2.0
language:
- ar
- en
---
# SILMA Arabic Matryoshka Embedding Model 0.1
The **SILMA Arabic Matryoshka Embedding Model 0.1** is an advanced Arabic text embedding model designed to produce powerful, contextually rich representations of text,
facilitating a wide range of applications, from semantic search to document classification.
This model leverages the innovative **Matryoshka** Embedding technique which can be used in different dimensions to optimize the speed, storga, and accuracy trade-offs.
## Usage
### Direct Usage (Sentence Transformers)
First, install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then load the model
```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
import pandas as pd
model_name = "silma-ai/silma-embeddding-matryoshka-0.1"
model = SentenceTransformer(model_name)
```
### Samples
Using Matryoshka, you can specify the first `(n)` dimensions to represent each text.
In the following samples, you can check how each dimension affects the `cosine similarity` between a query and the two inputs.
You can notice the in most cases, even too low dimension (i.e. 8) can produce acceptable semantic similarity scores.
#### [+] Short Sentence Similarity
```python
query = "الطقس اليوم مشمس"
sentence_1 = "الجو اليوم كان مشمسًا ورائعًا"
sentence_2 = "الطقس اليوم غائم"
scores = []
for dim in [768, 256, 48, 16, 8]:
query_embedding = model.encode(query)[:dim]
sent1_score = cos_sim(query_embedding, model.encode(sentence_1)[:dim])[0][0].tolist()
sent2_score = cos_sim(query_embedding, model.encode(sentence_2)[:dim])[0][0].tolist()
scores.append({
"dim": dim,
"valid_top": sent1_score > sent2_score,
"sent1_score": sent1_score,
"sent2_score": sent2_score,
})
scores_df = pd.DataFrame(scores)
print(scores_df.to_markdown(index=False))
# | dim | valid_top | sent1_score | sent2_score |
# |------:|:------------|--------------:|--------------:|
# | 768 | True | 0.479942 | 0.233572 |
# | 256 | True | 0.509289 | 0.208452 |
# | 48 | True | 0.598825 | 0.191677 |
# | 16 | True | 0.917707 | 0.458854 |
# | 8 | True | 0.948563 | 0.675662 |
```
#### [+] Long Sentence Similarity
```python
query = "الكتاب يتحدث عن أهمية الذكاء الاصطناعي في تطوير المجتمعات الحديثة"
sentence_1 = "في هذا الكتاب، يناقش الكاتب كيف يمكن للتكنولوجيا أن تغير العالم"
sentence_2 = "الكاتب يتحدث عن أساليب الطبخ التقليدية في دول البحر الأبيض المتوسط"
scores = []
for dim in [768, 256, 48, 16, 8]:
query_embedding = model.encode(query)[:dim]
sent1_score = cos_sim(query_embedding, model.encode(sentence_1)[:dim])[0][0].tolist()
sent2_score = cos_sim(query_embedding, model.encode(sentence_2)[:dim])[0][0].tolist()
scores.append({
"dim": dim,
"valid_top": sent1_score > sent2_score,
"sent1_score": sent1_score,
"sent2_score": sent2_score,
})
scores_df = pd.DataFrame(scores)
print(scores_df.to_markdown(index=False))
# | dim | valid_top | sent1_score | sent2_score |
# |------:|:------------|--------------:|--------------:|
# | 768 | True | 0.637418 | 0.262693 |
# | 256 | True | 0.614761 | 0.268267 |
# | 48 | True | 0.758887 | 0.384649 |
# | 16 | True | 0.885737 | 0.204213 |
# | 8 | True | 0.918684 | 0.146478 |
```
#### [+] Question to Paragraph Matching
```python
query = "ما هي فوائد ممارسة الرياضة؟"
sentence_1 = "ممارسة الرياضة بشكل منتظم تساعد على تحسين الصحة العامة واللياقة البدنية"
sentence_2 = "تعليم الأطفال في سن مبكرة يساعدهم على تطوير المهارات العقلية بسرعة"
scores = []
for dim in [768, 256, 48, 16, 8]:
query_embedding = model.encode(query)[:dim]
sent1_score = cos_sim(query_embedding, model.encode(sentence_1)[:dim])[0][0].tolist()
sent2_score = cos_sim(query_embedding, model.encode(sentence_2)[:dim])[0][0].tolist()
scores.append({
"dim": dim,
"valid_top": sent1_score > sent2_score,
"sent1_score": sent1_score,
"sent2_score": sent2_score,
})
scores_df = pd.DataFrame(scores)
print(scores_df.to_markdown(index=False))
# | dim | valid_top | sent1_score | sent2_score |
# |------:|:------------|--------------:|--------------:|
# | 768 | True | 0.520329 | 0.00295128 |
# | 256 | True | 0.556088 | -0.017764 |
# | 48 | True | 0.586194 | -0.110691 |
# | 16 | True | 0.606462 | -0.331682 |
# | 8 | True | 0.689649 | -0.359202 |
```
#### [+] Message to Intent-Name Mapping
```python
query = "أرغب في حجز تذكرة طيران من دبي الى القاهرة يوم الثلاثاء القادم"
sentence_1 = "حجز رحلة"
sentence_2 = "إلغاء حجز"
scores = []
for dim in [768, 256, 48, 16, 8]:
query_embedding = model.encode(query)[:dim]
sent1_score = cos_sim(query_embedding, model.encode(sentence_1)[:dim])[0][0].tolist()
sent2_score = cos_sim(query_embedding, model.encode(sentence_2)[:dim])[0][0].tolist()
scores.append({
"dim": dim,
"valid_top": sent1_score > sent2_score,
"sent1_score": sent1_score,
"sent2_score": sent2_score,
})
scores_df = pd.DataFrame(scores)
print(scores_df.to_markdown(index=False))
# | dim | valid_top | sent1_score | sent2_score |
# |------:|:------------|--------------:|--------------:|
# | 768 | True | 0.476535 | 0.221451 |
# | 256 | True | 0.392701 | 0.224967 |
# | 48 | True | 0.316223 | 0.0210683 |
# | 16 | False | -0.0242871 | 0.0250766 |
# | 8 | True | -0.215241 | -0.258904 |
```
## Training Details
We curated a dataset [silma-ai/silma-arabic-triplets-dataset-v1.0](https://huggingface.co/datasets/silma-ai/silma-arabic-triplets-dataset-v1.0) which
contains more than `2.25M` records of (anchor, positive and negative) Arabic/English samples.
Only the first `600` samples were taken to be the `eval` dataset, while the rest were used for fine-tuning.
This produced a finetuned `Matryoshka` model based on [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) with the following hyperparameters:
- `per_device_train_batch_size`: 250
- `per_device_eval_batch_size`: 10
- `learning_rate`: 1e-05
- `num_train_epochs`: 3
- `bf16`: True
- `dataloader_drop_last`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
**[training script](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/matryoshka/matryoshka_sts.py)**
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.2.0
- Transformers: 4.45.2
- PyTorch: 2.3.1
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.1
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
### Citation:
#### BibTeX:
```bibtex
@misc{silma2024embedding,
author = {Abu Bakr Soliman, Karim Ouda, SILMA AI},
title = {SILMA Embedding Matryoshka 0.1},
year = {2024},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/silma-ai/silma-embeddding-matryoshka-0.1}},
}
```
#### APA:
```apa
Abu Bakr Soliman, Karim Ouda, SILMA AI. (2024). SILMA Embedding Matryoshka STS 0.1 [Model]. Hugging Face. https://huggingface.co/silma-ai/silma-embeddding-matryoshka-0.1
```
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |