led-risalah_data_v8

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0169
  • Rouge1 Precision: 0.8329
  • Rouge1 Recall: 0.135
  • Rouge1 Fmeasure: 0.2293

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Fmeasure Rouge1 Precision Rouge1 Recall
1.9061 1.0 15 1.9704 0.1528 0.5489 0.0894
1.8015 2.0 30 1.7979 0.2037 0.6934 0.1204
1.6484 3.0 45 1.7690 0.2107 0.72 0.1244
1.3656 4.0 60 1.7353 0.223 0.7526 0.1321
1.1833 5.0 75 1.7215 0.2172 0.7498 0.1283
1.1678 6.0 90 1.7365 0.2094 0.7063 0.1241
1.1258 7.0 105 1.7643 0.2193 0.7425 0.1299
1.0591 8.0 120 1.7697 0.2184 0.7328 0.1295
0.8896 9.0 135 1.7835 0.2207 0.7391 0.1306
1.0655 10.0 150 1.7985 0.2241 0.7559 0.1325
0.8386 11.0 165 1.8309 0.2217 0.7502 0.1314
0.8968 12.0 180 1.8377 0.2147 0.7179 0.1276
0.7863 13.0 195 1.8737 0.2172 0.7293 0.129
0.6942 14.0 210 1.8858 0.2185 0.7489 0.1291
0.6656 15.0 225 1.9181 0.2243 0.7566 0.1328
0.6672 16.0 240 1.9407 0.2224 0.7513 0.1315
0.6405 17.0 255 1.9416 0.2151 0.7369 0.1272
0.7382 18.0 270 1.9533 0.2214 0.7506 0.1311
0.6445 19.0 285 1.9605 0.2136 0.7292 0.1262

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
162M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.