--- language: - ta license: apache-2.0 base_model: openai/whisper-base tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 metrics: - wer model-index: - name: Breeze DSW Tamil - base results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_16_0 ta type: mozilla-foundation/common_voice_16_0 config: ta split: test args: ta metrics: - name: Wer type: wer value: 21.407068619939793 --- # Breeze DSW Tamil - base This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the mozilla-foundation/common_voice_16_0 ta dataset. It achieves the following results on the evaluation set: - Loss: 0.375 - Wer: 21.4071 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1698 | 0.1 | 100 | 0.5723 | 30.4406 | | 0.3578 | 0.2 | 200 | 0.4302 | 25.6862 | | 0.2832 | 0.3 | 300 | 0.3967 | 23.2048 | | 0.2663 | 0.4 | 400 | 0.4038 | 23.8525 | | 0.5175 | 0.5 | 500 | 0.3962 | 24.1466 | | 0.2365 | 0.6 | 600 | 0.3850 | 22.2595 | | 0.1692 | 0.7 | 700 | 0.3960 | 21.8687 | | 0.1815 | 0.8 | 800 | 0.3823 | 22.0772 | | 0.1612 | 0.9 | 900 | 0.3701 | 21.8056 | | 0.1393 | 1.0 | 1000 | 0.375 | 21.4071 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0