File size: 1,893 Bytes
5132219 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: ai_art_exp2_vit_baroque
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ai_art_exp2_vit_baroque
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Accuracy: {'accuracy': 0.8833333333333333}
- Loss: 0.7276
- Overall Accuracy: 0.8833
- Human Accuracy: 0.72
- Ld Accuracy: 0.97
- Sd Accuracy: 0.96
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss | Overall Accuracy | Human Accuracy | Ld Accuracy | Sd Accuracy |
|:-------------:|:-----:|:----:|:--------------------------------:|:---------------:|:----------------:|:--------------:|:-----------:|:-----------:|
| 0.9747 | 0.96 | 18 | {'accuracy': 0.8666666666666667} | 0.7253 | 0.8667 | 0.6364 | 0.9813 | 0.9429 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|