sjainlucky's picture
Lunar-v2 RL model pushed with more timestamps
a1f71fa
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa638da2b90>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa638da2c20>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa638da2cb0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa638da2d40>",
"_build": "<function ActorCriticPolicy._build at 0x7fa638da2dd0>",
"forward": "<function ActorCriticPolicy.forward at 0x7fa638da2e60>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa638da2ef0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fa638da2f80>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa638da8050>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa638da80e0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa638da8170>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7fa638df3960>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1668669238073874014,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPPwD0SP24+/nEjvpb1j77EN2c88shQPQAAAAAAAAAAxl7MvqRWEj++xIM+9B2mvnveKL7tw3A9AAAAAAAAAABm89k8wf+QP0fEnD2W5hu/Uo0qPTjqZb0AAAAAAAAAAJpN2jyF46m5yqshMzmTli+BXbS6ZjG5swAAgD8AAIA/JtHOvUCysj8K46W+S7zXvjYzs71TFlO9AAAAAAAAAACtAhy+TLHCP1FTKr+7JWS9ncwHvt63T74AAAAAAAAAAE2HOj7eZrA/oAYnP8BCzb5Ztjs+0yZJPgAAAAAAAAAABkaNvocSTD9NLzO+xlfSvvKKWb5SHys9AAAAAAAAAAAmxTo+RjiMP1001D6wEAq/5dSGPmAPoj0AAAAAAAAAAJrB0r3Mfi0+TU9cPpsKjL76Cr67am6ougAAAAAAAAAA6i6VPqeeNz+iOse9fmwAv0WvFT6pLQS9AAAAAAAAAAAAqMw7Q1oWvJ6etTr3bsQ85j2IvengoD0AAIA/AACAP+bgM74iHIc/KjpbvtVdFL+JKf+9J/uivQAAAAAAAAAAlmxzvlSJYT4OsrA+FWFjvjX7Pr1gux09AAAAAAAAAAAdNVi+0XBQPjfPsD5mNGy+CGRcvbXwbT0AAAAAAAAAAM1MFrpwbas/LRz0O6bxDL80iVE8S2rPPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVURAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2PULdkNackCUhpRSlIwBbJRNWwGMAXSUR0Cx2vMpb2UTdX2UKGgGaAloD0MIU1vqIO+hcECUhpRSlGgVTZcBaBZHQLHbJwhGH591fZQoaAZoCWgPQwjr46HvrqFyQJSGlFKUaBVNBwFoFkdAsdtiMqBmPHV9lChoBmgJaA9DCGQEVDiC2nFAlIaUUpRoFU0JAWgWR0Cx23RtcfNidX2UKGgGaAloD0MI3X2OjxatckCUhpRSlGgVTU8BaBZHQLHbdZ2IO6N1fZQoaAZoCWgPQwg5JSAm4UZSQJSGlFKUaBVL9mgWR0Cx24j7hvR7dX2UKGgGaAloD0MIRSqMLQQJcUCUhpRSlGgVS99oFkdAsdvDqrzXjHV9lChoBmgJaA9DCEN1c/H30HFAlIaUUpRoFUv+aBZHQLHcBytmthd1fZQoaAZoCWgPQwi5MxMM5w1jQJSGlFKUaBVN6ANoFkdAsdwJC6YmcHV9lChoBmgJaA9DCIXq5uLv/3BAlIaUUpRoFUvyaBZHQLHcLozN2Tx1fZQoaAZoCWgPQwh1PdF1oSdxQJSGlFKUaBVNBAFoFkdAsdxGac7Qs3V9lChoBmgJaA9DCPFL/bypDnJAlIaUUpRoFU0oAWgWR0Cx3Kj8DSw4dX2UKGgGaAloD0MIYYpyafwcckCUhpRSlGgVTR4BaBZHQLHcutVrAQB1fZQoaAZoCWgPQwjoaiv2l4tvQJSGlFKUaBVNHgFoFkdAsdy60Sh8IHV9lChoBmgJaA9DCAWoqWVrHG9AlIaUUpRoFUv/aBZHQLHc39PUKAt1fZQoaAZoCWgPQwitiJroM2ZyQJSGlFKUaBVNMAFoFkdAsdz+w0O3D3V9lChoBmgJaA9DCA7bFmW2WG5AlIaUUpRoFUvjaBZHQLHdBuPmxMZ1fZQoaAZoCWgPQwiiuONN/ghzQJSGlFKUaBVNPQFoFkdAsd0Mam4y5HV9lChoBmgJaA9DCLITXoLTNW9AlIaUUpRoFUv9aBZHQLHdIEtuk1x1fZQoaAZoCWgPQwir6Xqi6+ZuQJSGlFKUaBVL+GgWR0Cx3UJUHY6GdX2UKGgGaAloD0MIL4uJzYdPcECUhpRSlGgVTQsBaBZHQLHdTJ04iot1fZQoaAZoCWgPQwjTo6meDFlxQJSGlFKUaBVL9mgWR0Cx3XZOnEVGdX2UKGgGaAloD0MIRPesa3TFcUCUhpRSlGgVS+1oFkdAsd2sleF+NXV9lChoBmgJaA9DCA2MvKxJZnFAlIaUUpRoFUvxaBZHQLHd8vxH5Jt1fZQoaAZoCWgPQwgceouH92dyQJSGlFKUaBVNGgFoFkdAsd37jQzDXXV9lChoBmgJaA9DCNxHbk269HBAlIaUUpRoFU0XAWgWR0Cx3h2CAc1gdX2UKGgGaAloD0MIufscH22ScECUhpRSlGgVS9poFkdAsd46uA7Pp3V9lChoBmgJaA9DCKVlpN7TjnBAlIaUUpRoFUvaaBZHQLHei7tiQT51fZQoaAZoCWgPQwhPAwZJH2tuQJSGlFKUaBVNGgFoFkdAsd62Il+mWXV9lChoBmgJaA9DCCJseHplv3JAlIaUUpRoFUvlaBZHQLHevBpYcNp1fZQoaAZoCWgPQwgOETen0oVyQJSGlFKUaBVNDQFoFkdAsd7E8ifQKXV9lChoBmgJaA9DCAExCRcyw3JAlIaUUpRoFU0rAWgWR0Cx3sUSuhbodX2UKGgGaAloD0MIJEil2NG/bECUhpRSlGgVS/VoFkdAsd7G1eBxxXV9lChoBmgJaA9DCKSnyCEiCnNAlIaUUpRoFU0jAWgWR0Cx3wgqAjIJdX2UKGgGaAloD0MInn5QFyneckCUhpRSlGgVS/1oFkdAsd8IJ/oaDXV9lChoBmgJaA9DCLh1N0816XFAlIaUUpRoFU0PAWgWR0Cx3zPMnqmkdX2UKGgGaAloD0MIglfLndmhcECUhpRSlGgVTQ0BaBZHQLHkVhq0tyx1fZQoaAZoCWgPQwhhi90+a/dxQJSGlFKUaBVNCwFoFkdAseSJSLqD9XV9lChoBmgJaA9DCKKXUSw3NG9AlIaUUpRoFUvnaBZHQLHkjwkxASp1fZQoaAZoCWgPQwjFqkGYm+9wQJSGlFKUaBVL6mgWR0Cx5Ju45Lh8dX2UKGgGaAloD0MICr/Uz5sxc0CUhpRSlGgVS+1oFkdAseTaMVDa5HV9lChoBmgJaA9DCGGowwr3HHJAlIaUUpRoFU0oAWgWR0Cx5SqEFnqWdX2UKGgGaAloD0MIehowSDpvcECUhpRSlGgVS+9oFkdAseVdoh6jWXV9lChoBmgJaA9DCLx1/u0yKHBAlIaUUpRoFUv3aBZHQLHld8DB/I91fZQoaAZoCWgPQwhA2v8A69xtQJSGlFKUaBVL+GgWR0Cx5XtTLns+dX2UKGgGaAloD0MIR8zs8xiackCUhpRSlGgVTQ0BaBZHQLHloPUaybB1fZQoaAZoCWgPQwgSFhVxuqpxQJSGlFKUaBVNFQFoFkdAseWg/GEPD3V9lChoBmgJaA9DCAOy17u/P3NAlIaUUpRoFU05AWgWR0Cx5bsc+7lJdX2UKGgGaAloD0MIttlYifkhckCUhpRSlGgVS/ZoFkdAseW9QqI8AHV9lChoBmgJaA9DCLbbLjRXHm5AlIaUUpRoFU0RAWgWR0Cx5hbz06HTdX2UKGgGaAloD0MIpG5nX3nocECUhpRSlGgVTToBaBZHQLHmNmRNh3J1fZQoaAZoCWgPQwhyUMJM22hxQJSGlFKUaBVL62gWR0Cx5jp1A7gbdX2UKGgGaAloD0MIrYTukrhwcUCUhpRSlGgVTQ4BaBZHQLHmPsWO6up1fZQoaAZoCWgPQwhY42w6Au5mQJSGlFKUaBVN6ANoFkdAseZLvJA+p3V9lChoBmgJaA9DCDhNnx1wxXBAlIaUUpRoFU0IAWgWR0Cx5nSX+l0pdX2UKGgGaAloD0MIA3rhzoV0cUCUhpRSlGgVS+toFkdAseaCGGmDUXV9lChoBmgJaA9DCKa3PxcNt3FAlIaUUpRoFU0gAWgWR0Cx5okOAiFCdX2UKGgGaAloD0MIdxTnqCPLbkCUhpRSlGgVS/9oFkdAsebpqXWvsHV9lChoBmgJaA9DCMozL4fdAnFAlIaUUpRoFUvxaBZHQLHm/wJPZZl1fZQoaAZoCWgPQwjQYFPn0bpvQJSGlFKUaBVL4mgWR0Cx5zweA/cGdX2UKGgGaAloD0MIO6kvS/tgckCUhpRSlGgVS+VoFkdAsedERK6FunV9lChoBmgJaA9DCGQjEK/re3BAlIaUUpRoFU0VAWgWR0Cx510pVjqfdX2UKGgGaAloD0MIqmbWUsCBcECUhpRSlGgVTR4BaBZHQLHnah6Skj51fZQoaAZoCWgPQwiQMuICELFwQJSGlFKUaBVNGQFoFkdAseeJVKf4AXV9lChoBmgJaA9DCKBwdmsZtW5AlIaUUpRoFU0zAWgWR0Cx57oEbHZLdX2UKGgGaAloD0MIM95Wem19bkCUhpRSlGgVS+hoFkdAsefKSQo1DXV9lChoBmgJaA9DCG6HhsWo/m5AlIaUUpRoFU0FAWgWR0Cx5+EL2HtXdX2UKGgGaAloD0MI3NeBcwb8cECUhpRSlGgVS+hoFkdAsefg+0PYnXV9lChoBmgJaA9DCNEksaSc6nBAlIaUUpRoFUvwaBZHQLHn4rJ8v251fZQoaAZoCWgPQwj6sx8pohJvQJSGlFKUaBVNAQFoFkdAsef53dKujnV9lChoBmgJaA9DCPjDz38PzG5AlIaUUpRoFU0DAWgWR0Cx6DhbwBo3dX2UKGgGaAloD0MI4Zf6edOzbECUhpRSlGgVS/5oFkdAsehF6Y3Ns3V9lChoBmgJaA9DCPOQKR/CMHFAlIaUUpRoFU0eAWgWR0Cx6HakEcKgdX2UKGgGaAloD0MIcm2oGKc2cUCUhpRSlGgVS95oFkdAseh2cFyJbnV9lChoBmgJaA9DCC3t1FxuEG1AlIaUUpRoFUvsaBZHQLHonWNm16V1fZQoaAZoCWgPQwgqxvmbkCxxQJSGlFKUaBVL6GgWR0Cx6P/KZDzAdX2UKGgGaAloD0MIpIy4ADT6cECUhpRSlGgVTQoBaBZHQLHpJjFQ2uR1fZQoaAZoCWgPQwjAXfbrzupxQJSGlFKUaBVNFAFoFkdAsekzsPatcXV9lChoBmgJaA9DCNkIxOt683NAlIaUUpRoFU0bAWgWR0Cx6WIG6f8NdX2UKGgGaAloD0MIGQEVjuCocECUhpRSlGgVS+xoFkdAseloXl8w6HV9lChoBmgJaA9DCHOfHAWI5XFAlIaUUpRoFUvmaBZHQLHpbeQuEmJ1fZQoaAZoCWgPQwgFiIIZ01pxQJSGlFKUaBVL9GgWR0Cx6Z9Oh0yQdX2UKGgGaAloD0MI2QbuQB0sc0CUhpRSlGgVTSUBaBZHQLHpo41gpjN1fZQoaAZoCWgPQwiIZTOHZF1xQJSGlFKUaBVL8GgWR0Cx6bPpljEvdX2UKGgGaAloD0MIQfM5d7s7cECUhpRSlGgVTQMBaBZHQLHpumaYu011fZQoaAZoCWgPQwgyy54ENjdtQJSGlFKUaBVNBgFoFkdAsenAA2hqTXV9lChoBmgJaA9DCMcqpWf6iW9AlIaUUpRoFUv7aBZHQLHqPUrCm/F1fZQoaAZoCWgPQwgSM/s8BjtyQJSGlFKUaBVL8GgWR0Cx6lmkN4JNdX2UKGgGaAloD0MICVIpdnRjckCUhpRSlGgVTSwBaBZHQLHqWh8pkPN1fZQoaAZoCWgPQwj8OQX5Wc5vQJSGlFKUaBVNLQFoFkdAsepr3h4t6HV9lChoBmgJaA9DCBdmoZ2T63FAlIaUUpRoFU0oAWgWR0Cx6pDNliBodX2UKGgGaAloD0MInPhqR7E5cUCUhpRSlGgVS+ZoFkdAserC7SRbKXV9lChoBmgJaA9DCBE0ZhI1JXFAlIaUUpRoFUvdaBZHQLHq7I1+AmR1fZQoaAZoCWgPQwiEKjV7oAZvQJSGlFKUaBVL62gWR0Cx6wFr2xptdX2UKGgGaAloD0MI4lrtYS+QcECUhpRSlGgVS95oFkdAsesktDlYEHV9lChoBmgJaA9DCKbydoQTFHFAlIaUUpRoFU0uAWgWR0Cx6yzfvWpZdX2UKGgGaAloD0MIpMUZwxzpb0CUhpRSlGgVS+JoFkdAseswrvsqrnV9lChoBmgJaA9DCNCc9SlHR29AlIaUUpRoFU0AAWgWR0Cx6zRyOq//dX2UKGgGaAloD0MIAvT7/o1fc0CUhpRSlGgVS9xoFkdAses8iPhhpnV9lChoBmgJaA9DCMzwn27g/HBAlIaUUpRoFU0yAWgWR0Cx61QN9YwJdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 372,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}