sjainlucky commited on
Commit
13c5812
1 Parent(s): 3a23357

First RL model pushed

Browse files
LunarLander_mlp.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc215c7ed9cbdffd376a5add7edaaddde195e57b2ad79c71b8ef4c74dc29477
3
+ size 147118
LunarLander_mlp/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
LunarLander_mlp/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa638da2b90>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa638da2c20>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa638da2cb0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa638da2d40>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa638da2dd0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa638da2e60>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa638da2ef0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa638da2f80>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa638da8050>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa638da80e0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa638da8170>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fa638df3960>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1668667520860769980,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANC3Tr62nJU/DkU4v4mFzr7ox/a9FRAxvgAAAAAAAAAAmjn+POFuhboTQM+6RnIIvZ1jLTsVou49AACAPwAAAACAkUe9KFeGvCFZDLxDyCU8TpTpvb3kCj0AAIA/AACAP0BCrD3DQTa6my6vuqD687Wvj9E6yOfMOQAAgD8AAIA/jSK7va55mroSrm46+wSUNTOJDjqN9Ya5AACAPwAAgD9mZKm9luC4P93cu74Z9Fi+WD8BvkYjAb4AAAAAAAAAADNPXTyPgk66VqhYu+tFPrYoqCS7RgV7OgAAgD8AAIA/pi0FPtjHij+Mjcw+IO8Lv+JrEDzfFxQ8AAAAAAAAAACAnUA+1BGQvLTXBrtyPEA5CTECvkp/KzoAAIA/AACAP02+sT3s8eK5xDkAu6aupzZ+W+26sGAcOgAAAAAAAIA/mg7nvMciUz84TU69KnHOviKvRr0KlvW9AAAAAAAAAAAzz04+BZS4u4Uaerv29Ns4R8ITvZVjdDoAAIA/AACAP02htr1I+eg5khfYOvnoQDaQp6O6dukFugAAAAAAAIA/01soPnuBpzsabbm8Vdagumt+Oz1TTpK7AACAPwAAgD9zkp29ZvMXP8Of9b1+CqS+NrSPu6ZUhLwAAAAAAAAAAO1wRD66vzA/Zt/qPX8N5b5bYNM9P1YIvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVZBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIduJyvAJNQUCUhpRSlIwBbJRLuIwBdJRHQKHMpDP4VRF1fZQoaAZoCWgPQwhcVIuIYnxhQJSGlFKUaBVN6ANoFkdAodGYWxhUi3V9lChoBmgJaA9DCCKJXkYx8GNAlIaUUpRoFU3oA2gWR0Ch2YSvs7dSdX2UKGgGaAloD0MI53EYzN9CYECUhpRSlGgVTegDaBZHQKHaYlXRw611fZQoaAZoCWgPQwgvFobI6dVeQJSGlFKUaBVN6ANoFkdAodun2dupCXV9lChoBmgJaA9DCMAlAP+Ual1AlIaUUpRoFU3oA2gWR0Ch28sS00FbdX2UKGgGaAloD0MII4PcRZi6QUCUhpRSlGgVS+9oFkdAodwGrIYFaHV9lChoBmgJaA9DCJQVw9UBqGFAlIaUUpRoFU3oA2gWR0Ch4M5/b0vodX2UKGgGaAloD0MIuM1UiEcCOkCUhpRSlGgVS8ZoFkdAoeFeTJQtSXV9lChoBmgJaA9DCBAiGXJspTlAlIaUUpRoFUvKaBZHQKHipWVeKKp1fZQoaAZoCWgPQwiE86ljlQIRwJSGlFKUaBVLwWgWR0Ch4q7QswtbdX2UKGgGaAloD0MI203wTdPgY0CUhpRSlGgVTegDaBZHQKHj6C04R291fZQoaAZoCWgPQwjnOLcJ9+RYQJSGlFKUaBVN6ANoFkdAoeQZxrBTGnV9lChoBmgJaA9DCOhmf6BcpmFAlIaUUpRoFU3oA2gWR0Ch5F6ab4JvdX2UKGgGaAloD0MIRE5fz1fgaECUhpRSlGgVTegDaBZHQKHknj94u9R1fZQoaAZoCWgPQwhvYkhOJnxiQJSGlFKUaBVN6ANoFkdAoeUQUi6g/XV9lChoBmgJaA9DCOQSRx4IDGFAlIaUUpRoFU3oA2gWR0Ch5TyG8EmqdX2UKGgGaAloD0MIn1p9dVVlUkCUhpRSlGgVTegDaBZHQKHmIasIVud1fZQoaAZoCWgPQwi9NEWA0/NkQJSGlFKUaBVN6ANoFkdAofDh/PPcBXV9lChoBmgJaA9DCOiGpuz0g+c/lIaUUpRoFUvmaBZHQKH0ofs/pt91fZQoaAZoCWgPQwh5IojzcLNbQJSGlFKUaBVN6ANoFkdAofXW4LCvYHV9lChoBmgJaA9DCCDxK9bwqWBAlIaUUpRoFU3oA2gWR0Ch+xh73PAwdX2UKGgGaAloD0MIw/S9hmCYYECUhpRSlGgVTegDaBZHQKIF9w9aEBd1fZQoaAZoCWgPQwgEkrBvp5hhQJSGlFKUaBVN6ANoFkdAoghqBkI5YHV9lChoBmgJaA9DCNbkKavpQ1xAlIaUUpRoFU3oA2gWR0CiDrgGSpzcdX2UKGgGaAloD0MID7VtGIUQYUCUhpRSlGgVTegDaBZHQKIPbHH3lCF1fZQoaAZoCWgPQwihZ7Pqc8tgQJSGlFKUaBVN6ANoFkdAohD3DziCKHV9lChoBmgJaA9DCF2Kq8q+Z2FAlIaUUpRoFU3oA2gWR0CiEQI60Y0mdX2UKGgGaAloD0MIRzgteNEzPUCUhpRSlGgVS9BoFkdAohFTSCvovHV9lChoBmgJaA9DCCXqBZ9mpWVAlIaUUpRoFU3oA2gWR0CiEiyVnmJWdX2UKGgGaAloD0MIArhZvNhDYUCUhpRSlGgVTegDaBZHQKISWt5D7ZZ1fZQoaAZoCWgPQwhPkxlvK1lcQJSGlFKUaBVN6ANoFkdAohKheiSJTHV9lChoBmgJaA9DCHbFjPD2Zl5AlIaUUpRoFU3oA2gWR0CiEuEqMFUydX2UKGgGaAloD0MIniXICKhVZECUhpRSlGgVTegDaBZHQKITdVR1oxp1fZQoaAZoCWgPQwh8RiI0guFgQJSGlFKUaBVN6ANoFkdAohRiqdYnv3V9lChoBmgJaA9DCPn2rkFfmjlAlIaUUpRoFUu6aBZHQKIU/lbu+h51fZQoaAZoCWgPQwjzyvW2mXZdQJSGlFKUaBVN6ANoFkdAoh9OSwGGEnV9lChoBmgJaA9DCGWqYFRSRytAlIaUUpRoFUu5aBZHQKIfljaPCEZ1fZQoaAZoCWgPQwhq9dVVgWItQJSGlFKUaBVL7mgWR0CiH5b1yvLYdX2UKGgGaAloD0MISl0yjpEANECUhpRSlGgVS/doFkdAoiDkT6BRRHV9lChoBmgJaA9DCOFASBYwsTJAlIaUUpRoFUvdaBZHQKIiMo5PuXx1fZQoaAZoCWgPQwiTGtoA7JZiQJSGlFKUaBVN6ANoFkdAoiI/1DjR2XV9lChoBmgJaA9DCCu9NhurV2JAlIaUUpRoFU3oA2gWR0CiIzgk9lmOdX2UKGgGaAloD0MIEkw1s5b0RUCUhpRSlGgVS95oFkdAoiP6paRp13V9lChoBmgJaA9DCMbeiy/aGy9AlIaUUpRoFUvsaBZHQKIlQ2uxKQJ1fZQoaAZoCWgPQwjAkqtY/FteQJSGlFKUaBVN6ANoFkdAoidbKeTV2HV9lChoBmgJaA9DCCWUvhBy5kZAlIaUUpRoFUvhaBZHQKIurFefI0Z1fZQoaAZoCWgPQwgrUIvBw1tlQJSGlFKUaBVN6ANoFkdAojJRbQkX13V9lChoBmgJaA9DCGMJa2PslDdAlIaUUpRoFUvXaBZHQKI6H0XgtOF1fZQoaAZoCWgPQwhMcOoDybRlQJSGlFKUaBVN6ANoFkdAojwQbwSamXV9lChoBmgJaA9DCAG+27zxxGZAlIaUUpRoFU3oA2gWR0CiPP4AsCkodX2UKGgGaAloD0MIHSCYo8djYECUhpRSlGgVTegDaBZHQKI9LywOe8R1fZQoaAZoCWgPQwhQ4978htZdQJSGlFKUaBVN6ANoFkdAoj1/rB0p3HV9lChoBmgJaA9DCN+l1CXjx1pAlIaUUpRoFU3oA2gWR0CiPchwdbPhdX2UKGgGaAloD0MIb2dfeZDsUkCUhpRSlGgVTegDaBZHQKI/scT8HfN1fZQoaAZoCWgPQwg1Q6oo3p5gQJSGlFKUaBVN6ANoFkdAokERF/hESnV9lChoBmgJaA9DCM/4vrhUiVxAlIaUUpRoFU3oA2gWR0CiQW/Ls8gZdX2UKGgGaAloD0MIM2/Vdaj7W0CUhpRSlGgVTegDaBZHQKJM5huwX691fZQoaAZoCWgPQwikbmdfefpCQJSGlFKUaBVL5mgWR0CiTgwV0tAcdX2UKGgGaAloD0MI1lQWhV0YXUCUhpRSlGgVTegDaBZHQKJOgG5c1O11fZQoaAZoCWgPQwgVU+knHEtlQJSGlFKUaBVN6ANoFkdAok6QC8vmHXV9lChoBmgJaA9DCNR/1vx4ZmZAlIaUUpRoFU3oA2gWR0CiT4B0Qsf8dX2UKGgGaAloD0MIPnsuU5PsXECUhpRSlGgVTegDaBZHQKJQZ27FsHl1fZQoaAZoCWgPQwhbmlshrBYUwJSGlFKUaBVLu2gWR0CiUG9p7CzkdX2UKGgGaAloD0MIAoI5enxaZkCUhpRSlGgVTegDaBZHQKJTd8w5/9Z1fZQoaAZoCWgPQwjb2y3JAbsPQJSGlFKUaBVL92gWR0CiVS9iMHbAdX2UKGgGaAloD0MI0T/BxQo9ZkCUhpRSlGgVTegDaBZHQKJZAlhw2l51fZQoaAZoCWgPQwjMCG8PwllhQJSGlFKUaBVN6ANoFkdAomT6ZfD1oXV9lChoBmgJaA9DCDQRNjy9rWFAlIaUUpRoFU3oA2gWR0CiZvi48U22dX2UKGgGaAloD0MIZttpa8SPY0CUhpRSlGgVTegDaBZHQKJn5/82rGR1fZQoaAZoCWgPQwhFZcOaymtcQJSGlFKUaBVN6ANoFkdAomgaauwHJXV9lChoBmgJaA9DCFeYvteQjGBAlIaUUpRoFU3oA2gWR0CiaGlJg9eQdX2UKGgGaAloD0MIoS+9/TlNYECUhpRSlGgVTegDaBZHQKJqwrlvIfd1fZQoaAZoCWgPQwis5GN3AfhgQJSGlFKUaBVN6ANoFkdAomw7UCq6v3V9lChoBmgJaA9DCDdwB+qU301AlIaUUpRoFUuwaBZHQKJteAQQL/l1fZQoaAZoCWgPQwioAYOkT7NjQJSGlFKUaBVN6ANoFkdAonhwfwI+n3V9lChoBmgJaA9DCNUmTu53WkhAlIaUUpRoFUuxaBZHQKJ6CZn+Q2d1fZQoaAZoCWgPQwiEu7N228taQJSGlFKUaBVN6ANoFkdAonojR+jM3nV9lChoBmgJaA9DCGfXvRWJumBAlIaUUpRoFU3oA2gWR0CiejOmzjWDdX2UKGgGaAloD0MILUMc6+I9X0CUhpRSlGgVTegDaBZHQKJ7LGgi/wl1fZQoaAZoCWgPQwgniLoPwOJgQJSGlFKUaBVN6ANoFkdAonwJCY1HfHV9lChoBmgJaA9DCPbv+sxZJWNAlIaUUpRoFU3oA2gWR0CifBEOiFj/dX2UKGgGaAloD0MISYPb2sJ9XkCUhpRSlGgVTegDaBZHQKJ+1k3CKrJ1fZQoaAZoCWgPQwitGK4OgMgkQJSGlFKUaBVL0GgWR0Cif8T7l7tzdX2UKGgGaAloD0MIVpv/Vx3DQECUhpRSlGgVS9VoFkdAon/UINVinnV9lChoBmgJaA9DCBP0F3pE/WFAlIaUUpRoFU3oA2gWR0CigHKKpDNRdX2UKGgGaAloD0MIuFm8WBiOMUCUhpRSlGgVS/poFkdAooD5WcSXdHV9lChoBmgJaA9DCBnjw+xl5GBAlIaUUpRoFU3oA2gWR0Cig4lK9PDYdX2UKGgGaAloD0MIpfPhWYLaQsCUhpRSlGgVS7JoFkdAooYIaFVT73V9lChoBmgJaA9DCK8K1GLweWRAlIaUUpRoFU3oA2gWR0CijdUR3/xUdX2UKGgGaAloD0MILLgf8MAQK8CUhpRSlGgVTQoBaBZHQKKPMKBNEgJ1fZQoaAZoCWgPQwhLBRVVv2RgQJSGlFKUaBVN6ANoFkdAoo+Qmmce83V9lChoBmgJaA9DCNY5BmSvPFtAlIaUUpRoFU3oA2gWR0CikIL0aqCIdX2UKGgGaAloD0MIyw9c5QnLWkCUhpRSlGgVTegDaBZHQKKQw+FlCkZ1fZQoaAZoCWgPQwjAr5EkCBcFwJSGlFKUaBVLumgWR0Cik7yrYGt7dX2UKGgGaAloD0MIN2xblNlqQUCUhpRSlGgVS6ZoFkdAopRViYsunXV9lChoBmgJaA9DCIuJzce11FpAlIaUUpRoFU3oA2gWR0CilIKz7di2dX2UKGgGaAloD0MI+DJRhNTGX0CUhpRSlGgVTegDaBZHQKKVqvaDf3x1fZQoaAZoCWgPQwh/2T15WFAvwJSGlFKUaBVLq2gWR0CilazDfm9ydX2UKGgGaAloD0MI0GIpkq9/UECUhpRSlGgVS6hoFkdAopXVmQKa5XVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
LunarLander_mlp/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7800e61541a05c076199072c9d3aff35fbd689c050f6149eed40da20f5c525af
3
+ size 87865
LunarLander_mlp/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54376121d81654542ad8e20d60724617fafdacc06b6f2a567e64bd8f3bf09b71
3
+ size 43201
LunarLander_mlp/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
LunarLander_mlp/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 224.17 +/- 69.82
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa638da2b90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa638da2c20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa638da2cb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa638da2d40>", "_build": "<function ActorCriticPolicy._build at 0x7fa638da2dd0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa638da2e60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa638da2ef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa638da2f80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa638da8050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa638da80e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa638da8170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa638df3960>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668667520860769980, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANC3Tr62nJU/DkU4v4mFzr7ox/a9FRAxvgAAAAAAAAAAmjn+POFuhboTQM+6RnIIvZ1jLTsVou49AACAPwAAAACAkUe9KFeGvCFZDLxDyCU8TpTpvb3kCj0AAIA/AACAP0BCrD3DQTa6my6vuqD687Wvj9E6yOfMOQAAgD8AAIA/jSK7va55mroSrm46+wSUNTOJDjqN9Ya5AACAPwAAgD9mZKm9luC4P93cu74Z9Fi+WD8BvkYjAb4AAAAAAAAAADNPXTyPgk66VqhYu+tFPrYoqCS7RgV7OgAAgD8AAIA/pi0FPtjHij+Mjcw+IO8Lv+JrEDzfFxQ8AAAAAAAAAACAnUA+1BGQvLTXBrtyPEA5CTECvkp/KzoAAIA/AACAP02+sT3s8eK5xDkAu6aupzZ+W+26sGAcOgAAAAAAAIA/mg7nvMciUz84TU69KnHOviKvRr0KlvW9AAAAAAAAAAAzz04+BZS4u4Uaerv29Ns4R8ITvZVjdDoAAIA/AACAP02htr1I+eg5khfYOvnoQDaQp6O6dukFugAAAAAAAIA/01soPnuBpzsabbm8Vdagumt+Oz1TTpK7AACAPwAAgD9zkp29ZvMXP8Of9b1+CqS+NrSPu6ZUhLwAAAAAAAAAAO1wRD66vzA/Zt/qPX8N5b5bYNM9P1YIvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIduJyvAJNQUCUhpRSlIwBbJRLuIwBdJRHQKHMpDP4VRF1fZQoaAZoCWgPQwhcVIuIYnxhQJSGlFKUaBVN6ANoFkdAodGYWxhUi3V9lChoBmgJaA9DCCKJXkYx8GNAlIaUUpRoFU3oA2gWR0Ch2YSvs7dSdX2UKGgGaAloD0MI53EYzN9CYECUhpRSlGgVTegDaBZHQKHaYlXRw611fZQoaAZoCWgPQwgvFobI6dVeQJSGlFKUaBVN6ANoFkdAodun2dupCXV9lChoBmgJaA9DCMAlAP+Ual1AlIaUUpRoFU3oA2gWR0Ch28sS00FbdX2UKGgGaAloD0MII4PcRZi6QUCUhpRSlGgVS+9oFkdAodwGrIYFaHV9lChoBmgJaA9DCJQVw9UBqGFAlIaUUpRoFU3oA2gWR0Ch4M5/b0vodX2UKGgGaAloD0MIuM1UiEcCOkCUhpRSlGgVS8ZoFkdAoeFeTJQtSXV9lChoBmgJaA9DCBAiGXJspTlAlIaUUpRoFUvKaBZHQKHipWVeKKp1fZQoaAZoCWgPQwiE86ljlQIRwJSGlFKUaBVLwWgWR0Ch4q7QswtbdX2UKGgGaAloD0MI203wTdPgY0CUhpRSlGgVTegDaBZHQKHj6C04R291fZQoaAZoCWgPQwjnOLcJ9+RYQJSGlFKUaBVN6ANoFkdAoeQZxrBTGnV9lChoBmgJaA9DCOhmf6BcpmFAlIaUUpRoFU3oA2gWR0Ch5F6ab4JvdX2UKGgGaAloD0MIRE5fz1fgaECUhpRSlGgVTegDaBZHQKHknj94u9R1fZQoaAZoCWgPQwhvYkhOJnxiQJSGlFKUaBVN6ANoFkdAoeUQUi6g/XV9lChoBmgJaA9DCOQSRx4IDGFAlIaUUpRoFU3oA2gWR0Ch5TyG8EmqdX2UKGgGaAloD0MIn1p9dVVlUkCUhpRSlGgVTegDaBZHQKHmIasIVud1fZQoaAZoCWgPQwi9NEWA0/NkQJSGlFKUaBVN6ANoFkdAofDh/PPcBXV9lChoBmgJaA9DCOiGpuz0g+c/lIaUUpRoFUvmaBZHQKH0ofs/pt91fZQoaAZoCWgPQwh5IojzcLNbQJSGlFKUaBVN6ANoFkdAofXW4LCvYHV9lChoBmgJaA9DCCDxK9bwqWBAlIaUUpRoFU3oA2gWR0Ch+xh73PAwdX2UKGgGaAloD0MIw/S9hmCYYECUhpRSlGgVTegDaBZHQKIF9w9aEBd1fZQoaAZoCWgPQwgEkrBvp5hhQJSGlFKUaBVN6ANoFkdAoghqBkI5YHV9lChoBmgJaA9DCNbkKavpQ1xAlIaUUpRoFU3oA2gWR0CiDrgGSpzcdX2UKGgGaAloD0MID7VtGIUQYUCUhpRSlGgVTegDaBZHQKIPbHH3lCF1fZQoaAZoCWgPQwihZ7Pqc8tgQJSGlFKUaBVN6ANoFkdAohD3DziCKHV9lChoBmgJaA9DCF2Kq8q+Z2FAlIaUUpRoFU3oA2gWR0CiEQI60Y0mdX2UKGgGaAloD0MIRzgteNEzPUCUhpRSlGgVS9BoFkdAohFTSCvovHV9lChoBmgJaA9DCCXqBZ9mpWVAlIaUUpRoFU3oA2gWR0CiEiyVnmJWdX2UKGgGaAloD0MIArhZvNhDYUCUhpRSlGgVTegDaBZHQKISWt5D7ZZ1fZQoaAZoCWgPQwhPkxlvK1lcQJSGlFKUaBVN6ANoFkdAohKheiSJTHV9lChoBmgJaA9DCHbFjPD2Zl5AlIaUUpRoFU3oA2gWR0CiEuEqMFUydX2UKGgGaAloD0MIniXICKhVZECUhpRSlGgVTegDaBZHQKITdVR1oxp1fZQoaAZoCWgPQwh8RiI0guFgQJSGlFKUaBVN6ANoFkdAohRiqdYnv3V9lChoBmgJaA9DCPn2rkFfmjlAlIaUUpRoFUu6aBZHQKIU/lbu+h51fZQoaAZoCWgPQwjzyvW2mXZdQJSGlFKUaBVN6ANoFkdAoh9OSwGGEnV9lChoBmgJaA9DCGWqYFRSRytAlIaUUpRoFUu5aBZHQKIfljaPCEZ1fZQoaAZoCWgPQwhq9dVVgWItQJSGlFKUaBVL7mgWR0CiH5b1yvLYdX2UKGgGaAloD0MISl0yjpEANECUhpRSlGgVS/doFkdAoiDkT6BRRHV9lChoBmgJaA9DCOFASBYwsTJAlIaUUpRoFUvdaBZHQKIiMo5PuXx1fZQoaAZoCWgPQwiTGtoA7JZiQJSGlFKUaBVN6ANoFkdAoiI/1DjR2XV9lChoBmgJaA9DCCu9NhurV2JAlIaUUpRoFU3oA2gWR0CiIzgk9lmOdX2UKGgGaAloD0MIEkw1s5b0RUCUhpRSlGgVS95oFkdAoiP6paRp13V9lChoBmgJaA9DCMbeiy/aGy9AlIaUUpRoFUvsaBZHQKIlQ2uxKQJ1fZQoaAZoCWgPQwjAkqtY/FteQJSGlFKUaBVN6ANoFkdAoidbKeTV2HV9lChoBmgJaA9DCCWUvhBy5kZAlIaUUpRoFUvhaBZHQKIurFefI0Z1fZQoaAZoCWgPQwgrUIvBw1tlQJSGlFKUaBVN6ANoFkdAojJRbQkX13V9lChoBmgJaA9DCGMJa2PslDdAlIaUUpRoFUvXaBZHQKI6H0XgtOF1fZQoaAZoCWgPQwhMcOoDybRlQJSGlFKUaBVN6ANoFkdAojwQbwSamXV9lChoBmgJaA9DCAG+27zxxGZAlIaUUpRoFU3oA2gWR0CiPP4AsCkodX2UKGgGaAloD0MIHSCYo8djYECUhpRSlGgVTegDaBZHQKI9LywOe8R1fZQoaAZoCWgPQwhQ4978htZdQJSGlFKUaBVN6ANoFkdAoj1/rB0p3HV9lChoBmgJaA9DCN+l1CXjx1pAlIaUUpRoFU3oA2gWR0CiPchwdbPhdX2UKGgGaAloD0MIb2dfeZDsUkCUhpRSlGgVTegDaBZHQKI/scT8HfN1fZQoaAZoCWgPQwg1Q6oo3p5gQJSGlFKUaBVN6ANoFkdAokERF/hESnV9lChoBmgJaA9DCM/4vrhUiVxAlIaUUpRoFU3oA2gWR0CiQW/Ls8gZdX2UKGgGaAloD0MIM2/Vdaj7W0CUhpRSlGgVTegDaBZHQKJM5huwX691fZQoaAZoCWgPQwikbmdfefpCQJSGlFKUaBVL5mgWR0CiTgwV0tAcdX2UKGgGaAloD0MI1lQWhV0YXUCUhpRSlGgVTegDaBZHQKJOgG5c1O11fZQoaAZoCWgPQwgVU+knHEtlQJSGlFKUaBVN6ANoFkdAok6QC8vmHXV9lChoBmgJaA9DCNR/1vx4ZmZAlIaUUpRoFU3oA2gWR0CiT4B0Qsf8dX2UKGgGaAloD0MIPnsuU5PsXECUhpRSlGgVTegDaBZHQKJQZ27FsHl1fZQoaAZoCWgPQwhbmlshrBYUwJSGlFKUaBVLu2gWR0CiUG9p7CzkdX2UKGgGaAloD0MIAoI5enxaZkCUhpRSlGgVTegDaBZHQKJTd8w5/9Z1fZQoaAZoCWgPQwjb2y3JAbsPQJSGlFKUaBVL92gWR0CiVS9iMHbAdX2UKGgGaAloD0MI0T/BxQo9ZkCUhpRSlGgVTegDaBZHQKJZAlhw2l51fZQoaAZoCWgPQwjMCG8PwllhQJSGlFKUaBVN6ANoFkdAomT6ZfD1oXV9lChoBmgJaA9DCDQRNjy9rWFAlIaUUpRoFU3oA2gWR0CiZvi48U22dX2UKGgGaAloD0MIZttpa8SPY0CUhpRSlGgVTegDaBZHQKJn5/82rGR1fZQoaAZoCWgPQwhFZcOaymtcQJSGlFKUaBVN6ANoFkdAomgaauwHJXV9lChoBmgJaA9DCFeYvteQjGBAlIaUUpRoFU3oA2gWR0CiaGlJg9eQdX2UKGgGaAloD0MIoS+9/TlNYECUhpRSlGgVTegDaBZHQKJqwrlvIfd1fZQoaAZoCWgPQwis5GN3AfhgQJSGlFKUaBVN6ANoFkdAomw7UCq6v3V9lChoBmgJaA9DCDdwB+qU301AlIaUUpRoFUuwaBZHQKJteAQQL/l1fZQoaAZoCWgPQwioAYOkT7NjQJSGlFKUaBVN6ANoFkdAonhwfwI+n3V9lChoBmgJaA9DCNUmTu53WkhAlIaUUpRoFUuxaBZHQKJ6CZn+Q2d1fZQoaAZoCWgPQwiEu7N228taQJSGlFKUaBVN6ANoFkdAonojR+jM3nV9lChoBmgJaA9DCGfXvRWJumBAlIaUUpRoFU3oA2gWR0CiejOmzjWDdX2UKGgGaAloD0MILUMc6+I9X0CUhpRSlGgVTegDaBZHQKJ7LGgi/wl1fZQoaAZoCWgPQwgniLoPwOJgQJSGlFKUaBVN6ANoFkdAonwJCY1HfHV9lChoBmgJaA9DCPbv+sxZJWNAlIaUUpRoFU3oA2gWR0CifBEOiFj/dX2UKGgGaAloD0MISYPb2sJ9XkCUhpRSlGgVTegDaBZHQKJ+1k3CKrJ1fZQoaAZoCWgPQwitGK4OgMgkQJSGlFKUaBVL0GgWR0Cif8T7l7tzdX2UKGgGaAloD0MIVpv/Vx3DQECUhpRSlGgVS9VoFkdAon/UINVinnV9lChoBmgJaA9DCBP0F3pE/WFAlIaUUpRoFU3oA2gWR0CigHKKpDNRdX2UKGgGaAloD0MIuFm8WBiOMUCUhpRSlGgVS/poFkdAooD5WcSXdHV9lChoBmgJaA9DCBnjw+xl5GBAlIaUUpRoFU3oA2gWR0Cig4lK9PDYdX2UKGgGaAloD0MIpfPhWYLaQsCUhpRSlGgVS7JoFkdAooYIaFVT73V9lChoBmgJaA9DCK8K1GLweWRAlIaUUpRoFU3oA2gWR0CijdUR3/xUdX2UKGgGaAloD0MILLgf8MAQK8CUhpRSlGgVTQoBaBZHQKKPMKBNEgJ1fZQoaAZoCWgPQwhLBRVVv2RgQJSGlFKUaBVN6ANoFkdAoo+Qmmce83V9lChoBmgJaA9DCNY5BmSvPFtAlIaUUpRoFU3oA2gWR0CikIL0aqCIdX2UKGgGaAloD0MIyw9c5QnLWkCUhpRSlGgVTegDaBZHQKKQw+FlCkZ1fZQoaAZoCWgPQwjAr5EkCBcFwJSGlFKUaBVLumgWR0Cik7yrYGt7dX2UKGgGaAloD0MIN2xblNlqQUCUhpRSlGgVS6ZoFkdAopRViYsunXV9lChoBmgJaA9DCIuJzce11FpAlIaUUpRoFU3oA2gWR0CilIKz7di2dX2UKGgGaAloD0MI+DJRhNTGX0CUhpRSlGgVTegDaBZHQKKVqvaDf3x1fZQoaAZoCWgPQwh/2T15WFAvwJSGlFKUaBVLq2gWR0CilazDfm9ydX2UKGgGaAloD0MI0GIpkq9/UECUhpRSlGgVS6hoFkdAopXVmQKa5XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (240 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 224.1656066806676, "std_reward": 69.82165159235603, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-17T07:07:57.245497"}