skytect commited on
Commit
6a27843
1 Parent(s): 9d6a4d2

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: conditional-detr-resnet-50_til-2023-cv-9
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # conditional-detr-resnet-50_til-2023-cv-9
14
+
15
+ This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on an unknown dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.2502
18
+ - Loss Ce: 0.0010
19
+ - Loss Bbox: 0.0160
20
+ - Loss Giou: 0.0842
21
+ - Cardinality Error: 2.1237
22
+ - Map: 0.8063
23
+ - Map 50: 0.9901
24
+ - Map 75: 0.9609
25
+ - Map Small: 0.8063
26
+ - Map Medium: -1.0
27
+ - Map Large: -1.0
28
+ - Mar 1: 0.4097
29
+ - Mar 10: 0.8555
30
+ - Mar 100: 0.8555
31
+ - Mar Small: 0.8555
32
+ - Mar Medium: -1.0
33
+ - Mar Large: -1.0
34
+ - Map Per Class: -1.0
35
+ - Mar 100 Per Class: -1.0
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 8
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 15
61
+ - mixed_precision_training: Native AMP
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Loss Ce | Loss Bbox | Loss Giou | Cardinality Error | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Per Class | Mar 100 Per Class |
66
+ |:-------------:|:-----:|:-----:|:---------------:|:-------:|:---------:|:---------:|:-----------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:-------------:|:-----------------:|
67
+ | 0.4695 | 1.0 | 708 | 0.4327 | 0.0120 | 0.0256 | 0.1404 | 2.1237 | 0.7356 | 0.9796 | 0.9229 | 0.7356 | -1.0 | -1.0 | 0.3810 | 0.7910 | 0.7910 | 0.7910 | -1.0 | -1.0 | -1.0 | -1.0 |
68
+ | 0.2915 | 2.0 | 1416 | 0.3432 | 0.0056 | 0.0217 | 0.1118 | 2.1237 | 0.7640 | 0.9892 | 0.9391 | 0.7640 | -1.0 | -1.0 | 0.3900 | 0.8128 | 0.8128 | 0.8128 | -1.0 | -1.0 | -1.0 | -1.0 |
69
+ | 0.2713 | 3.0 | 2124 | 0.3150 | 0.0063 | 0.0194 | 0.1026 | 2.1237 | 0.7819 | 0.9894 | 0.9494 | 0.7819 | -1.0 | -1.0 | 0.3977 | 0.8274 | 0.8274 | 0.8274 | -1.0 | -1.0 | -1.0 | -1.0 |
70
+ | 0.2583 | 4.0 | 2832 | 0.2754 | 0.0026 | 0.0174 | 0.0915 | 2.1237 | 0.7931 | 0.9898 | 0.9515 | 0.7931 | -1.0 | -1.0 | 0.4026 | 0.8387 | 0.8387 | 0.8387 | -1.0 | -1.0 | -1.0 | -1.0 |
71
+ | 0.2264 | 5.0 | 3540 | 0.2768 | 0.0019 | 0.0178 | 0.0921 | 2.1237 | 0.8011 | 0.9899 | 0.9623 | 0.8011 | -1.0 | -1.0 | 0.4057 | 0.8452 | 0.8452 | 0.8452 | -1.0 | -1.0 | -1.0 | -1.0 |
72
+ | 0.2841 | 6.0 | 4248 | 0.3362 | 0.0049 | 0.0207 | 0.1115 | 2.1237 | 0.7973 | 0.9900 | 0.9614 | 0.7973 | -1.0 | -1.0 | 0.4043 | 0.8434 | 0.8434 | 0.8434 | -1.0 | -1.0 | -1.0 | -1.0 |
73
+ | 0.2929 | 7.0 | 4956 | 0.3310 | 0.0078 | 0.0203 | 0.1071 | 2.1237 | 0.7986 | 0.9899 | 0.9616 | 0.7986 | -1.0 | -1.0 | 0.4053 | 0.8445 | 0.8445 | 0.8445 | -1.0 | -1.0 | -1.0 | -1.0 |
74
+ | 0.2405 | 8.0 | 5664 | 0.2681 | 0.0017 | 0.0168 | 0.0904 | 2.1237 | 0.8018 | 0.9900 | 0.9619 | 0.8018 | -1.0 | -1.0 | 0.4067 | 0.8481 | 0.8481 | 0.8481 | -1.0 | -1.0 | -1.0 | -1.0 |
75
+ | 0.1851 | 9.0 | 6372 | 0.2680 | 0.0019 | 0.0168 | 0.0901 | 2.1237 | 0.8050 | 0.9900 | 0.9622 | 0.8050 | -1.0 | -1.0 | 0.4081 | 0.8511 | 0.8511 | 0.8511 | -1.0 | -1.0 | -1.0 | -1.0 |
76
+ | 0.1842 | 10.0 | 7080 | 0.2553 | 0.0013 | 0.0163 | 0.0856 | 2.1237 | 0.8074 | 0.9900 | 0.9627 | 0.8074 | -1.0 | -1.0 | 0.4095 | 0.8544 | 0.8544 | 0.8544 | -1.0 | -1.0 | -1.0 | -1.0 |
77
+ | 0.3201 | 11.0 | 7788 | 0.3556 | 0.0034 | 0.0226 | 0.1179 | 2.1237 | 0.8040 | 0.9900 | 0.9617 | 0.8040 | -1.0 | -1.0 | 0.4080 | 0.8511 | 0.8511 | 0.8511 | -1.0 | -1.0 | -1.0 | -1.0 |
78
+ | 0.266 | 12.0 | 8496 | 0.3296 | 0.0021 | 0.0191 | 0.1151 | 2.1237 | 0.7996 | 0.9900 | 0.9600 | 0.7996 | -1.0 | -1.0 | 0.4069 | 0.8489 | 0.8489 | 0.8489 | -1.0 | -1.0 | -1.0 | -1.0 |
79
+ | 0.2086 | 13.0 | 9204 | 0.2753 | 0.0016 | 0.0178 | 0.0916 | 2.1237 | 0.8007 | 0.9900 | 0.9603 | 0.8007 | -1.0 | -1.0 | 0.4076 | 0.8506 | 0.8506 | 0.8506 | -1.0 | -1.0 | -1.0 | -1.0 |
80
+ | 0.1853 | 14.0 | 9912 | 0.2452 | 0.0009 | 0.0156 | 0.0827 | 2.1237 | 0.8037 | 0.9900 | 0.9606 | 0.8037 | -1.0 | -1.0 | 0.4088 | 0.8533 | 0.8533 | 0.8533 | -1.0 | -1.0 | -1.0 | -1.0 |
81
+ | 0.1588 | 15.0 | 10620 | 0.2502 | 0.0010 | 0.0160 | 0.0842 | 2.1237 | 0.8063 | 0.9901 | 0.9609 | 0.8063 | -1.0 | -1.0 | 0.4097 | 0.8555 | 0.8555 | 0.8555 | -1.0 | -1.0 | -1.0 | -1.0 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.29.2
87
+ - Pytorch 2.0.0
88
+ - Datasets 2.1.0
89
+ - Tokenizers 0.13.3