End of training
Browse files
README.md
CHANGED
@@ -4,51 +4,51 @@ base_model: microsoft/layoutlmv3-base
|
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
-
-
|
8 |
metrics:
|
9 |
- precision
|
10 |
- recall
|
11 |
- f1
|
12 |
- accuracy
|
13 |
model-index:
|
14 |
-
- name: layoutlmv3-finetuned-
|
15 |
results:
|
16 |
- task:
|
17 |
name: Token Classification
|
18 |
type: token-classification
|
19 |
dataset:
|
20 |
-
name:
|
21 |
-
type:
|
22 |
-
config:
|
23 |
split: test
|
24 |
-
args:
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
should probably proofread and complete it, then remove this comment. -->
|
42 |
|
43 |
-
# layoutlmv3-finetuned-
|
44 |
|
45 |
-
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss:
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -73,17 +73,22 @@ The following hyperparameters were used during training:
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
-
- training_steps:
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| No log | 0.
|
83 |
-
| No log |
|
84 |
-
| No log |
|
85 |
-
| No log |
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
|
89 |
### Framework versions
|
|
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
+
- funsd
|
8 |
metrics:
|
9 |
- precision
|
10 |
- recall
|
11 |
- f1
|
12 |
- accuracy
|
13 |
model-index:
|
14 |
+
- name: layoutlmv3-finetuned-funsd
|
15 |
results:
|
16 |
- task:
|
17 |
name: Token Classification
|
18 |
type: token-classification
|
19 |
dataset:
|
20 |
+
name: funsd
|
21 |
+
type: funsd
|
22 |
+
config: funsd
|
23 |
split: test
|
24 |
+
args: funsd
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.7467652495378928
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.8027819175360159
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.7737610725401005
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.8188517770117675
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
should probably proofread and complete it, then remove this comment. -->
|
42 |
|
43 |
+
# layoutlmv3-finetuned-funsd
|
44 |
|
45 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the funsd dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.5984
|
48 |
+
- Precision: 0.7468
|
49 |
+
- Recall: 0.8028
|
50 |
+
- F1: 0.7738
|
51 |
+
- Accuracy: 0.8189
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
+
- training_steps: 1000
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| No log | 0.67 | 100 | 1.0197 | 0.5025 | 0.5981 | 0.5462 | 0.6622 |
|
83 |
+
| No log | 1.34 | 200 | 0.6833 | 0.6203 | 0.7238 | 0.6680 | 0.7608 |
|
84 |
+
| No log | 2.01 | 300 | 0.6237 | 0.6401 | 0.7794 | 0.7030 | 0.7846 |
|
85 |
+
| No log | 2.68 | 400 | 0.6028 | 0.6892 | 0.7392 | 0.7133 | 0.7771 |
|
86 |
+
| 0.8343 | 3.36 | 500 | 0.5948 | 0.7175 | 0.7884 | 0.7512 | 0.7991 |
|
87 |
+
| 0.8343 | 4.03 | 600 | 0.5953 | 0.7135 | 0.8028 | 0.7555 | 0.7961 |
|
88 |
+
| 0.8343 | 4.7 | 700 | 0.5925 | 0.7354 | 0.7953 | 0.7642 | 0.8174 |
|
89 |
+
| 0.8343 | 5.37 | 800 | 0.6055 | 0.7397 | 0.7933 | 0.7656 | 0.8134 |
|
90 |
+
| 0.8343 | 6.04 | 900 | 0.5940 | 0.7535 | 0.8077 | 0.7797 | 0.8199 |
|
91 |
+
| 0.3468 | 6.71 | 1000 | 0.5984 | 0.7468 | 0.8028 | 0.7738 | 0.8189 |
|
92 |
|
93 |
|
94 |
### Framework versions
|