End of training
Browse files- README.md +14 -20
- model.safetensors +1 -1
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the generated dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0
|
49 |
-
- Recall: 0
|
50 |
-
- F1: 0
|
51 |
-
- Accuracy: 0
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -73,22 +73,16 @@ The following hyperparameters were used during training:
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
-
- training_steps:
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
|
|
83 |
-
|
|
84 |
-
|
|
85 |
-
|
|
86 |
-
| 0.1446 | 5.0 | 500 | 0.0126 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
87 |
-
| 0.1446 | 6.0 | 600 | 0.0102 | 0.9739 | 0.9858 | 0.9798 | 0.9973 |
|
88 |
-
| 0.1446 | 7.0 | 700 | 0.0065 | 0.9959 | 0.9939 | 0.9949 | 0.9994 |
|
89 |
-
| 0.1446 | 8.0 | 800 | 0.0045 | 0.9959 | 0.9959 | 0.9959 | 0.9996 |
|
90 |
-
| 0.1446 | 9.0 | 900 | 0.0052 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
|
91 |
-
| 0.0103 | 10.0 | 1000 | 0.0040 | 0.9980 | 0.9980 | 0.9980 | 0.9998 |
|
92 |
|
93 |
|
94 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 1.0
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 1.0
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 1.0
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 1.0
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the generated dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0013
|
48 |
+
- Precision: 1.0
|
49 |
+
- Recall: 1.0
|
50 |
+
- F1: 1.0
|
51 |
+
- Accuracy: 1.0
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
+
- training_steps: 2000
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.144 | 5.0 | 500 | 0.0124 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
83 |
+
| 0.0081 | 10.0 | 1000 | 0.0042 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
|
84 |
+
| 0.0034 | 15.0 | 1500 | 0.0013 | 1.0 | 1.0 | 1.0 | 1.0 |
|
85 |
+
| 0.0023 | 20.0 | 2000 | 0.0018 | 0.9980 | 1.0 | 0.9990 | 0.9998 |
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
|
88 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 503733512
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b17083ece54c1a111a93674503822f8e81c80e31510efc24c1d66f02f527643e
|
3 |
size 503733512
|