End of training
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the generated dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -73,14 +73,22 @@ The following hyperparameters were used during training:
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
-
- training_steps:
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| No log | 1.0 | 100 | 0.
|
83 |
-
| No log | 2.0 | 200 | 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
|
86 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.9979716024340771
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.9979716024340771
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.9979716024340771
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9997893406361913
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the generated dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0040
|
48 |
+
- Precision: 0.9980
|
49 |
+
- Recall: 0.9980
|
50 |
+
- F1: 0.9980
|
51 |
+
- Accuracy: 0.9998
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
+
- training_steps: 1000
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| No log | 1.0 | 100 | 0.1249 | 0.796 | 0.8073 | 0.8016 | 0.9785 |
|
83 |
+
| No log | 2.0 | 200 | 0.0338 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
84 |
+
| No log | 3.0 | 300 | 0.0194 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
85 |
+
| No log | 4.0 | 400 | 0.0153 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
86 |
+
| 0.1446 | 5.0 | 500 | 0.0126 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
87 |
+
| 0.1446 | 6.0 | 600 | 0.0102 | 0.9739 | 0.9858 | 0.9798 | 0.9973 |
|
88 |
+
| 0.1446 | 7.0 | 700 | 0.0065 | 0.9959 | 0.9939 | 0.9949 | 0.9994 |
|
89 |
+
| 0.1446 | 8.0 | 800 | 0.0045 | 0.9959 | 0.9959 | 0.9959 | 0.9996 |
|
90 |
+
| 0.1446 | 9.0 | 900 | 0.0052 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
|
91 |
+
| 0.0103 | 10.0 | 1000 | 0.0040 | 0.9980 | 0.9980 | 0.9980 | 0.9998 |
|
92 |
|
93 |
|
94 |
### Framework versions
|