--- library_name: peft license: apache-2.0 base_model: TinyLlama/TinyLlama_v1.1 tags: - axolotl - generated_from_trainer model-index: - name: e06cc970-900f-4c24-8ad4-1b16cc96e0db results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: TinyLlama/TinyLlama_v1.1 bf16: true chat_template: llama3 datasets: - data_files: - 9ea43b1347cf8a61_train_data.json ds_type: json format: custom path: /workspace/input_data/9ea43b1347cf8a61_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: sn5601/e06cc970-900f-4c24-8ad4-1b16cc96e0db hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 77GiB max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/9ea43b1347cf8a61_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 1024 special_tokens: pad_token: strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: sn56-miner wandb_mode: disabled wandb_name: e06cc970-900f-4c24-8ad4-1b16cc96e0db wandb_project: god wandb_run: 13qc wandb_runid: e06cc970-900f-4c24-8ad4-1b16cc96e0db warmup_steps: 10 weight_decay: 0.01 xformers_attention: false ```

# e06cc970-900f-4c24-8ad4-1b16cc96e0db This model is a fine-tuned version of [TinyLlama/TinyLlama_v1.1](https://huggingface.co/TinyLlama/TinyLlama_v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9940 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3025 | 0.0013 | 1 | 1.3975 | | 1.3584 | 0.0118 | 9 | 1.3002 | | 1.1731 | 0.0235 | 18 | 1.1337 | | 1.0732 | 0.0353 | 27 | 1.0760 | | 1.0309 | 0.0470 | 36 | 1.0441 | | 0.9931 | 0.0588 | 45 | 1.0247 | | 1.006 | 0.0705 | 54 | 1.0123 | | 1.0362 | 0.0823 | 63 | 1.0039 | | 0.9782 | 0.0941 | 72 | 0.9981 | | 1.0128 | 0.1058 | 81 | 0.9955 | | 1.0124 | 0.1176 | 90 | 0.9942 | | 1.0087 | 0.1293 | 99 | 0.9940 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1