--- library_name: peft base_model: unsloth/Hermes-3-Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: b9f27a84-be8d-45d2-abb3-773f959abab4 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Hermes-3-Llama-3.1-8B bf16: auto chat_template: llama3 cosine_min_lr_ratio: 0.1 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 5c3f012d6f350a11_train_data.json ds_type: json format: custom path: /workspace/input_data/5c3f012d6f350a11_train_data.json type: field_instruction: abstract field_output: related_work format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: '{'''':torch.cuda.current_device()}' do_eval: true early_stopping_patience: 1 eval_batch_size: 1 eval_sample_packing: false eval_steps: 25 evaluation_strategy: steps flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 64 gradient_checkpointing: true group_by_length: true hub_model_id: sn56a4/b9f27a84-be8d-45d2-abb3-773f959abab4 hub_repo: stevemonite hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: - q_proj - v_proj lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 70GiB max_steps: 500 micro_batch_size: 1 mlflow_experiment_name: /tmp/5c3f012d6f350a11_train_data.json model_type: AutoModelForCausalLM num_epochs: 4 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 save_strategy: steps sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer torch_compile: false train_on_inputs: false trust_remote_code: true val_set_size: 50 wandb_entity: sn56-miner wandb_mode: disabled wandb_name: b9f27a84-be8d-45d2-abb3-773f959abab4 wandb_project: god wandb_run: 2d93 wandb_runid: b9f27a84-be8d-45d2-abb3-773f959abab4 warmup_raio: 0.03 warmup_ratio: 0.05 weight_decay: 0.01 xformers_attention: null ```

# b9f27a84-be8d-45d2-abb3-773f959abab4 This model is a fine-tuned version of [unsloth/Hermes-3-Llama-3.1-8B](https://huggingface.co/unsloth/Hermes-3-Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3066 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 64 - total_train_batch_size: 256 - total_eval_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 25 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.6656 | 0.0064 | 1 | 3.0489 | | 2.4528 | 0.1589 | 25 | 2.3822 | | 2.4471 | 0.3178 | 50 | 2.3415 | | 2.3992 | 0.4767 | 75 | 2.3316 | | 2.3613 | 0.6356 | 100 | 2.3197 | | 2.3707 | 0.7944 | 125 | 2.3157 | | 2.3419 | 0.9533 | 150 | 2.3092 | | 2.255 | 1.1122 | 175 | 2.3080 | | 2.228 | 1.2711 | 200 | 2.3091 | | 2.2652 | 1.4300 | 225 | 2.3084 | | 2.2084 | 1.5889 | 250 | 2.3041 | | 2.2238 | 1.7478 | 275 | 2.3029 | | 2.2119 | 1.9067 | 300 | 2.3020 | | 2.2045 | 2.0655 | 325 | 2.3016 | | 2.1767 | 2.2244 | 350 | 2.3066 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1