---
library_name: peft
base_model: NousResearch/CodeLlama-13b-hf
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 66d60cd9-b42c-4bd6-8fec-a13c2c330f27
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: NousResearch/CodeLlama-13b-hf
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- a2f34f1ba0195eb3_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/a2f34f1ba0195eb3_train_data.json
type:
field_input: A
field_instruction: question
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 5
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: sn56m2/66d60cd9-b42c-4bd6-8fec-a13c2c330f27
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/a2f34f1ba0195eb3_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token:
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 66d60cd9-b42c-4bd6-8fec-a13c2c330f27
wandb_project: god
wandb_run: 7vsb
wandb_runid: 66d60cd9-b42c-4bd6-8fec-a13c2c330f27
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
# 66d60cd9-b42c-4bd6-8fec-a13c2c330f27
This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf](https://huggingface.co/NousResearch/CodeLlama-13b-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.8656
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 12
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0870 | 1 | 8.6576 |
| No log | 0.2609 | 3 | 8.6390 |
| 37.8497 | 0.5217 | 6 | 8.4498 |
| 37.8497 | 0.7826 | 9 | 7.2075 |
| 36.0964 | 1.0435 | 12 | 4.8656 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1