--- library_name: peft license: other base_model: sethuiyer/Medichat-Llama3-8B tags: - axolotl - generated_from_trainer model-index: - name: 95ca4aa7-ab2c-4aa9-ad44-6af549080339 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: sethuiyer/Medichat-Llama3-8B bf16: true chat_template: llama3 datasets: - data_files: - d8f4fb4d99ac2bcb_train_data.json ds_type: json format: custom path: /workspace/input_data/d8f4fb4d99ac2bcb_train_data.json type: field_input: example field_instruction: full_prompt field_output: instruction format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: sn56m2/95ca4aa7-ab2c-4aa9-ad44-6af549080339 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 2.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 77GiB max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/d8f4fb4d99ac2bcb_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: sn56-miner wandb_mode: disabled wandb_name: 95ca4aa7-ab2c-4aa9-ad44-6af549080339 wandb_project: god wandb_run: u0x7 wandb_runid: 95ca4aa7-ab2c-4aa9-ad44-6af549080339 warmup_steps: 10 weight_decay: 0.01 xformers_attention: false ```

# 95ca4aa7-ab2c-4aa9-ad44-6af549080339 This model is a fine-tuned version of [sethuiyer/Medichat-Llama3-8B](https://huggingface.co/sethuiyer/Medichat-Llama3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6293 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 45 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.9585 | 0.0667 | 1 | 2.0294 | | 2.0617 | 0.2667 | 4 | 2.0225 | | 1.8343 | 0.5333 | 8 | 1.8266 | | 1.5937 | 0.8 | 12 | 1.5095 | | 1.325 | 1.0667 | 16 | 1.2316 | | 0.9605 | 1.3333 | 20 | 0.9962 | | 0.8431 | 1.6 | 24 | 0.8367 | | 0.7358 | 1.8667 | 28 | 0.7405 | | 0.6291 | 2.1333 | 32 | 0.6830 | | 0.6869 | 2.4 | 36 | 0.6461 | | 0.6781 | 2.6667 | 40 | 0.6284 | | 0.6076 | 2.9333 | 44 | 0.6293 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1