--- library_name: peft license: llama3 base_model: unsloth/llama-3-8b tags: - axolotl - generated_from_trainer model-index: - name: 4d5fd6b0-cc94-41c9-8aca-56f9d4f160f0 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/llama-3-8b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1b172638fe2aeee0_train_data.json ds_type: json format: custom path: /workspace/input_data/1b172638fe2aeee0_train_data.json type: field_input: context field_instruction: question_text field_output: answers format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: sn56m5/4d5fd6b0-cc94-41c9-8aca-56f9d4f160f0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/1b172638fe2aeee0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: sn56-miner wandb_mode: disabled wandb_name: 4d5fd6b0-cc94-41c9-8aca-56f9d4f160f0 wandb_project: god wandb_run: 2ed7 wandb_runid: 4d5fd6b0-cc94-41c9-8aca-56f9d4f160f0 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 4d5fd6b0-cc94-41c9-8aca-56f9d4f160f0 This model is a fine-tuned version of [unsloth/llama-3-8b](https://huggingface.co/unsloth/llama-3-8b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | 1.7668 | | 1.1694 | 0.0057 | 10 | 0.8553 | | 0.4702 | 0.0115 | 20 | 0.4380 | | 0.3844 | 0.0172 | 30 | 0.2749 | | 0.2806 | 0.0229 | 40 | 0.2683 | | 0.2544 | 0.0287 | 50 | 0.2448 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1