File size: 1,675 Bytes
f4321e2 23eaf68 f4321e2 47412da 961776a c192693 63c6a7e 2f95943 fe52666 8889744 3df7858 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
license: apache-2.0
language:
- zh
library_name: transformers
pipeline_tag: text-generation
inference:
parameters:
temperature: 0.7
top_p: 0.6
repetition_penalty: 1.1
max_new_tokens: 128
num_return_sequences: 3
do_sample: true
tags:
- art
widget:
- 笔底江山助磅礴
- (唐诗:秋思)诗词
- (宋词:浣溪沙)秋
- (对联)冬
---
# Chinese Poem and Couplt small GPT2 Model
## Model description
The model is used to generate Chinese ancient poems and couplets. It is based on the [IDEA-CCNL/Wenzhong-GPT2-110M](https://huggingface.co/IDEA-CCNL/Wenzhong-GPT2-110M)
## How to use
You can use the model directly with a pipeline for text generation:
When the parameter skip_special_tokens is True:
```python
>>> from transformers import BertTokenizer, GPT2LMHeadModel,TextGenerationPipeline
>>> tokenizer = BertTokenizer.from_pretrained("snzhang/GPT2-Poem-Small")
>>> model = GPT2LMHeadModel.from_pretrained("snzhang/GPT2-Poem-Small")
>>> text_generator = TextGenerationPipeline(model, tokenizer)
>>> text_generator("笔底江山助磅礴", max_length=50, do_sample=True)
[{'generated_text':'笔底江山助磅礴,万卷诗书见成章。'}]
```
And you can add the prefix "(唐诗:your title)"、"(宋词:your title)" and "(对联)" to make generation more precise.
## Training data
Training data contains 71,334 Chinese ancient poems and couplets which are collected by [Chinese Poetry](https://github.com/chinese-poetry/chinese-poetry) and [Couplet Dataset](https://github.com/wb14123/couplet-dataset)
## More Details
You can get more details in [GPT2-Poem-Small](https://github.com/h7nian/GPT2-Poem-Small)
|