|
|
|
|
|
from tqdm import tqdm |
|
import unicodedata |
|
import re |
|
import pickle |
|
import torch |
|
import NER_medNLP as ner |
|
from bs4 import BeautifulSoup |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
dict_key = {} |
|
|
|
|
|
def to_xml(data): |
|
with open("key_attr.pkl", "rb") as tf: |
|
key_attr = pickle.load(tf) |
|
|
|
text = data['text'] |
|
count = 0 |
|
for i, entities in enumerate(data['entities_predicted']): |
|
if entities == "": |
|
return |
|
span = entities['span'] |
|
type_id = id_to_tags[entities['type_id']].split('_') |
|
tag = type_id[0] |
|
|
|
if not type_id[1] == "": |
|
attr = ' ' + value_to_key(type_id[1], key_attr) + '=' + '"' + type_id[1] + '"' |
|
else: |
|
attr = "" |
|
|
|
add_tag = "<" + str(tag) + str(attr) + ">" |
|
text = text[:span[0]+count] + add_tag + text[span[0]+count:] |
|
count += len(add_tag) |
|
|
|
add_tag = "</" + str(tag) + ">" |
|
text = text[:span[1]+count] + add_tag + text[span[1]+count:] |
|
count += len(add_tag) |
|
return text |
|
|
|
|
|
def predict_entities(modelpath, sentences_list, len_num_entity_type): |
|
|
|
|
|
|
|
|
|
|
|
model = ner.BertForTokenClassification_pl(modelpath, num_labels=81, lr=1e-5) |
|
bert_tc = model.bert_tc.to(device) |
|
|
|
MODEL_NAME = 'tohoku-nlp/bert-base-japanese-whole-word-masking' |
|
tokenizer = ner.NER_tokenizer_BIO.from_pretrained( |
|
MODEL_NAME, |
|
num_entity_type = len_num_entity_type |
|
) |
|
|
|
|
|
entities_predicted_list = [] |
|
|
|
text_entities_set = [] |
|
for dataset in sentences_list: |
|
text_entities = [] |
|
for sample in tqdm(dataset): |
|
text = sample |
|
encoding, spans = tokenizer.encode_plus_untagged( |
|
text, return_tensors='pt' |
|
) |
|
encoding = { k: v.to(device) for k, v in encoding.items() } |
|
|
|
with torch.no_grad(): |
|
output = bert_tc(**encoding) |
|
scores = output.logits |
|
scores = scores[0].cpu().numpy().tolist() |
|
|
|
|
|
entities_predicted = tokenizer.convert_bert_output_to_entities( |
|
text, scores, spans |
|
) |
|
|
|
|
|
entities_predicted_list.append(entities_predicted) |
|
text_entities.append({'text': text, 'entities_predicted': entities_predicted}) |
|
text_entities_set.append(text_entities) |
|
return text_entities_set |
|
|
|
def combine_sentences(text_entities_set, insert: str): |
|
documents = [] |
|
for text_entities in tqdm(text_entities_set): |
|
document = [] |
|
for t in text_entities: |
|
document.append(to_xml(t)) |
|
documents.append('\n'.join(document)) |
|
return documents |
|
|
|
def value_to_key(value, key_attr): |
|
global dict_key |
|
if dict_key.get(value) != None: |
|
return dict_key[value] |
|
for k in key_attr.keys(): |
|
for v in key_attr[k]: |
|
if value == v: |
|
dict_key[v]=k |
|
return k |
|
|
|
|
|
if __name__ == '__main__': |
|
with open("id_to_tags.pkl", "rb") as tf: |
|
id_to_tags = pickle.load(tf) |
|
with open("key_attr.pkl", "rb") as tf: |
|
key_attr = pickle.load(tf) |
|
with open('text.txt') as f: |
|
articles_raw = f.read() |
|
|
|
|
|
article_norm = unicodedata.normalize('NFKC', articles_raw) |
|
|
|
sentences_raw = [s for s in re.split(r'\n', articles_raw) if s != ''] |
|
sentences_norm = [s for s in re.split(r'\n', article_norm) if s != ''] |
|
|
|
text_entities_set = predict_entities("sociocom/MedNER-CR-JA", [sentences_norm], len(id_to_tags)) |
|
|
|
|
|
for i, texts_ent in enumerate(text_entities_set[0]): |
|
texts_ent['text'] = sentences_raw[i] |
|
|
|
|
|
documents = combine_sentences(text_entities_set, '\n') |
|
|
|
print(documents[0]) |
|
|