--- language: - ja license: - cc-by-4.0 tags: - NER - medical documents datasets: - MedTxt-CR-JA-training-v2.xml metrics: - NTCIR-16 Real-MedNLP subtask 1 --- This is a model for named entity recognition of Japanese medical documents. ### How to use Download the following five files and put into the same folder. - id_to_tags.pkl - key_attr.pkl - NER_medNLP.py - predict.py - text.txt (This is an input file which should be predicted, which could be changed as the text done NER.) You can use this model by running predict.py. ``` python3 predict.py ``` ### Input Example ``` 肥大型心筋症、心房細動に対してWF投与が開始となった。 治療経過中に非持続性心室頻拍が認められたためアミオダロンが併用となった。 ``` ### Output Example ``` 肥大型心筋症、心房細動に対してWF投与が開始となった。 治療経過中非持続性心室頻拍が認められたためアミオダロンが併用となった。 ``` ### Publication Tomohiro Nishiyama, Aki Ando, Mihiro Nishidani, Shuntaro Yada, Shoko Wakamiya, Eiji Aramaki: NAISTSOC at the NTCIR-16 Real-MedNLP Task, In Proceedings of the 16th NTCIR Conference on Evaluation of Information Access Technologies (NTCIR-16), pp. 330-333, 2022