|
|
|
import argparse |
|
import os.path |
|
import pickle |
|
import unicodedata |
|
|
|
import torch |
|
from tqdm import tqdm |
|
|
|
import NER_medNLP as ner |
|
import utils |
|
from EntityNormalizer import EntityNormalizer, EntityDictionary, DefaultDiseaseDict, DefaultDrugDict |
|
|
|
device = torch.device("mps" if torch.backends.mps.is_available() else 'cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
dict_key = {} |
|
|
|
|
|
|
|
def to_xml(data, id_to_tags): |
|
with open("key_attr.pkl", "rb") as tf: |
|
key_attr = pickle.load(tf) |
|
|
|
text = data['text'] |
|
count = 0 |
|
for i, entities in enumerate(data['entities_predicted']): |
|
if entities == "": |
|
return |
|
span = entities['span'] |
|
try: |
|
type_id = id_to_tags[entities['type_id']].split('_') |
|
except: |
|
print("out of rage type_id", entities) |
|
continue |
|
tag = type_id[0] |
|
|
|
if not type_id[1] == "": |
|
attr = ' ' + value_to_key(type_id[1], key_attr) + '=' + '"' + type_id[1] + '"' |
|
else: |
|
attr = "" |
|
|
|
if 'norm' in entities: |
|
attr = attr + ' norm="' + str(entities['norm']) + '"' |
|
|
|
add_tag = "<" + str(tag) + str(attr) + ">" |
|
text = text[:span[0] + count] + add_tag + text[span[0] + count:] |
|
count += len(add_tag) |
|
|
|
add_tag = "</" + str(tag) + ">" |
|
text = text[:span[1] + count] + add_tag + text[span[1] + count:] |
|
count += len(add_tag) |
|
return text |
|
|
|
|
|
def predict_entities(model, tokenizer, sentences_list): |
|
|
|
|
|
entities_predicted_list = [] |
|
|
|
text_entities_set = [] |
|
for dataset in sentences_list: |
|
text_entities = [] |
|
for sample in tqdm(dataset, desc='Predict', leave=False): |
|
text = sample |
|
encoding, spans = tokenizer.encode_plus_untagged( |
|
text, return_tensors='pt' |
|
) |
|
encoding = {k: v.to(device) for k, v in encoding.items()} |
|
|
|
with torch.no_grad(): |
|
output = model(**encoding) |
|
scores = output.logits |
|
scores = scores[0].cpu().numpy().tolist() |
|
|
|
|
|
entities_predicted = tokenizer.convert_bert_output_to_entities( |
|
text, scores, spans |
|
) |
|
|
|
|
|
entities_predicted_list.append(entities_predicted) |
|
text_entities.append({'text': text, 'entities_predicted': entities_predicted}) |
|
text_entities_set.append(text_entities) |
|
return text_entities_set |
|
|
|
|
|
def combine_sentences(text_entities_set, id_to_tags, insert: str): |
|
documents = [] |
|
for text_entities in text_entities_set: |
|
document = [] |
|
for t in text_entities: |
|
document.append(to_xml(t, id_to_tags)) |
|
documents.append('\n'.join(document)) |
|
return documents |
|
|
|
|
|
def value_to_key(value, key_attr): |
|
global dict_key |
|
if dict_key.get(value) != None: |
|
return dict_key[value] |
|
for k in key_attr.keys(): |
|
for v in key_attr[k]: |
|
if value == v: |
|
dict_key[v] = k |
|
return k |
|
|
|
|
|
|
|
def normalize_entities(text_entities_set, id_to_tags, disease_dict=None, disease_candidate_col=None, disease_normalization_col=None, disease_matching_threshold=None, drug_dict=None, |
|
drug_candidate_col=None, drug_normalization_col=None, drug_matching_threshold=None): |
|
if disease_dict: |
|
disease_dict = EntityDictionary(disease_dict, disease_candidate_col, disease_normalization_col) |
|
else: |
|
disease_dict = DefaultDiseaseDict() |
|
disease_normalizer = EntityNormalizer(disease_dict, matching_threshold=disease_matching_threshold) |
|
|
|
if drug_dict: |
|
drug_dict = EntityDictionary(drug_dict, drug_candidate_col, drug_normalization_col) |
|
else: |
|
drug_dict = DefaultDrugDict() |
|
drug_normalizer = EntityNormalizer(drug_dict, matching_threshold=drug_matching_threshold) |
|
|
|
for entry in tqdm(text_entities_set, desc='Normalization', leave=False): |
|
for text_entities in entry: |
|
entities = text_entities['entities_predicted'] |
|
for entity in entities: |
|
tag = id_to_tags[entity['type_id']].split('_')[0] |
|
|
|
normalizer = drug_normalizer if tag == 'm-key' \ |
|
else disease_normalizer if tag == 'd' \ |
|
else None |
|
|
|
if normalizer is None: |
|
continue |
|
|
|
normalization, score = normalizer.normalize(entity['name']) |
|
entity['norm'] = str(normalization) |
|
|
|
|
|
def run(model, input, output=None, normalize=False, **kwargs): |
|
with open("id_to_tags.pkl", "rb") as tf: |
|
id_to_tags = pickle.load(tf) |
|
len_num_entity_type = len(id_to_tags) |
|
|
|
|
|
classification_model = ner.BertForTokenClassification_pl.from_pretrained_bin(model_path=model, num_labels=2 * len_num_entity_type + 1) |
|
bert_tc = classification_model.bert_tc.to(device) |
|
|
|
tokenizer = ner.NER_tokenizer_BIO.from_pretrained( |
|
'tohoku-nlp/bert-base-japanese-whole-word-masking', |
|
num_entity_type=len_num_entity_type |
|
) |
|
|
|
|
|
if (os.path.isdir(input)): |
|
files = [os.path.join(input, f) for f in os.listdir(input) if os.path.isfile(os.path.join(input, f))] |
|
else: |
|
files = [input] |
|
|
|
for file in tqdm(files, desc="Input file"): |
|
try: |
|
with open(file) as f: |
|
articles_raw = f.read() |
|
|
|
article_norm = unicodedata.normalize('NFKC', articles_raw) |
|
|
|
sentences_raw = utils.split_sentences(articles_raw) |
|
sentences_norm = utils.split_sentences(article_norm) |
|
|
|
text_entities_set = predict_entities(bert_tc, tokenizer, [sentences_norm]) |
|
|
|
for i, texts_ent in enumerate(text_entities_set[0]): |
|
texts_ent['text'] = sentences_raw[i] |
|
|
|
if normalize: |
|
normalize_entities(text_entities_set, id_to_tags, **kwargs) |
|
|
|
documents = combine_sentences(text_entities_set, id_to_tags, '\n') |
|
|
|
tqdm.write(f"File: {file}") |
|
tqdm.write(documents[0]) |
|
tqdm.write("") |
|
|
|
if output: |
|
with open(file.replace(input, output), 'w') as f: |
|
f.write(documents[0]) |
|
|
|
except Exception as e: |
|
tqdm.write("Error while processing file: {}".format(file)) |
|
tqdm.write(str(e)) |
|
tqdm.write("") |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser(description='Predict entities from text') |
|
parser.add_argument('-m', '--model', type=str, default='pytorch_model.bin', help='Path to model checkpoint') |
|
parser.add_argument('-i', '--input', type=str, default='text.txt', help='Path to text file or directory') |
|
parser.add_argument('-o', '--output', type=str, default=None, help='Path to output file or directory') |
|
parser.add_argument('-n', '--normalize', action=argparse.BooleanOptionalAction, help='Enable entity normalization', default=False) |
|
|
|
|
|
parser.add_argument("--drug-dict", help="File path for overriding the default drug dictionary") |
|
parser.add_argument("--drug-candidate-col", type=int, help="Column name for drug candidates in the CSV file (required if --drug-dict is specified)") |
|
parser.add_argument("--drug-normalization-col", type=int, help="Column name for drug normalization in the CSV file (required if --drug-dict is specified") |
|
parser.add_argument('--disease-matching-threshold', type=int, default=50, help='Matching threshold for disease dictionary') |
|
|
|
parser.add_argument("--disease-dict", help="File path for overriding the default disease dictionary") |
|
parser.add_argument("--disease-candidate-col", type=int, help="Column name for disease candidates in the CSV file (required if --disease-dict is specified)") |
|
parser.add_argument("--disease-normalization-col", type=int, help="Column name for disease normalization in the CSV file (required if --disease-dict is specified)") |
|
parser.add_argument('--drug-matching-threshold', type=int, default=50, help='Matching threshold for drug dictionary') |
|
args = parser.parse_args() |
|
|
|
argument_dict = vars(args) |
|
run(**argument_dict) |
|
|