--- inference: true tags: - text-generation-inference - SFNR-LLM - sofanor model-index: - name: sofanor-7b results: [] license: mit language: - en - ru - fr metrics: - accuracy pipeline_tag: text-generation --- # SFNR LLM ### Model Description - **Developed by:** [Sofanor AI](https://huggingface.co/sofanorai) - **Funded by:** [OpenSkyML](https://huggingface.co/openskyml) - **Model type:** [text-generation](https://huggingface.co/models?pipeline_tag=text-generation) - **Language(s):** [English](https://huggingface.co/models?language=en), [Russian](https://huggingface.co/models?language=ru), [French](https://huggingface.co/models?language=fr) - **License:** [Mit](https://huggingface.co/models?license=license%3Amit) ### Model Sources - **Repository:** [on HF.co](https://huggingface.co/sofanorai/sfnr-llm/) - **Demo:** [on HF.co](https://huggingface.co/spaces/sofanorai/sfnr-llm) ## How to Get Started with the Model Use the code below to get started with the model. 1. Run install module command: ```cmd pip install requests ``` 2. Paste this code: ```py import requests HF_READ_TOKEN = "hf_token" # Use yor read-token, it is free API_URL = "https://api-inference.huggingface.co/models/sofanorai/sofanor-7b" headers = {"Authorization": f"Bearer {HF_READ_TOKEN}"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() output = query({ "inputs": "Can you please let us know more details about your ", }) ``` 3. Run with Python: ```cmd python your_file.py ``` ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** GPU - **Compute Region:** USA