--- base_model: microsoft/Phi-3.5-mini-instruct library_name: peft license: mit tags: - trl - sft - generated_from_trainer model-index: - name: Phi-3.5-MultiCap-mt-5 results: [] --- # Phi-3.5-MultiCap-mt-5 This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9814 | 0.5109 | 50 | 0.9569 | | 0.7431 | 1.0217 | 100 | 0.7821 | | 0.7487 | 1.5326 | 150 | 0.7389 | | 0.7355 | 2.0434 | 200 | 0.7197 | | 0.7317 | 2.5543 | 250 | 0.7090 | | 0.7308 | 3.0651 | 300 | 0.7025 | | 0.6926 | 3.5760 | 350 | 0.6978 | | 0.684 | 4.0868 | 400 | 0.6948 | | 0.6965 | 4.5977 | 450 | 0.6935 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1