File size: 1,789 Bytes
e5671b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
base_model: microsoft/Phi-3.5-mini-instruct
library_name: peft
license: mit
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Phi-3.5-MultiCap-mt-new
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Phi-3.5-MultiCap-mt-new

This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6661

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 4

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.8401        | 0.5109 | 50   | 0.8176          |
| 0.6779        | 1.0217 | 100  | 0.7203          |
| 0.6889        | 1.5326 | 150  | 0.6930          |
| 0.6861        | 2.0434 | 200  | 0.6800          |
| 0.6797        | 2.5543 | 250  | 0.6723          |
| 0.6801        | 3.0651 | 300  | 0.6683          |
| 0.6439        | 3.5760 | 350  | 0.6661          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.1+cu124
- Datasets 3.0.0
- Tokenizers 0.19.1