Suparious commited on
Commit
3e33f69
1 Parent(s): 006bf8c

Add model card

Browse files
Files changed (1) hide show
  1. README.md +136 -0
README.md CHANGED
@@ -1,3 +1,139 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - finetuned
4
+ - quantized
5
+ - 4-bit
6
+ - AWQ
7
+ - transformers
8
+ - pytorch
9
+ - mistral
10
+ - instruct
11
+ - text-generation
12
+ - conversational
13
+ - license:apache-2.0
14
+ - autotrain_compatible
15
+ - endpoints_compatible
16
+ - text-generation-inference
17
+ - finetune
18
+ - chatml
19
+ datasets:
20
+ - jondurbin/truthy-dpo-v0.1
21
+ model-index:
22
+ - name: WestLake-7B-v2-laser-truthy-dpo
23
+ results: []
24
+ base_model: macadeliccc/WestLake-7B-v2-laser-truthy-dpo
25
  license: apache-2.0
26
+ language:
27
+ - en
28
+ library_name: transformers
29
+ model_creator: macadeliccc
30
+ model_name: WestLake-7B-v2-laser-truthy-dpo
31
+ model_type: mistral
32
+ pipeline_tag: text-generation
33
+ inference: false
34
+ prompt_template: '<|im_start|>system
35
+
36
+ {system_message}<|im_end|>
37
+
38
+ <|im_start|>user
39
+
40
+ {prompt}<|im_end|>
41
+
42
+ <|im_start|>assistant
43
+
44
+ '
45
+ quantized_by: Suparious
46
  ---
47
+ # macadeliccc/WestLake-7B-v2-laser-truthy-dpo AWQ
48
+
49
+ ![westlake-header](westlake-header.png)
50
+
51
+ ## Model Summary
52
+
53
+ + Trained [cognitivecomputations/WestLake-7B-v2-laser](https://huggingface.co/cognitivecomputations/WestLake-7B-v2-laser) on jondurbin/truthy-dpo-v0.1
54
+ + Completed 2 epochs
55
+ + 2e-5 learning rate
56
+
57
+ ## How to use
58
+
59
+ ### Install the necessary packages
60
+
61
+ ```bash
62
+ pip install --upgrade autoawq autoawq-kernels
63
+ ```
64
+
65
+ ### Example Python code
66
+
67
+ ```python
68
+ from awq import AutoAWQForCausalLM
69
+ from transformers import AutoTokenizer, TextStreamer
70
+
71
+ model_path = "solidrust/WestLake-7B-v2-AWQ"
72
+ system_message = "You are Senzu, incarnated as a powerful AI."
73
+
74
+ # Load model
75
+ model = AutoAWQForCausalLM.from_quantized(model_path,
76
+ fuse_layers=True)
77
+ tokenizer = AutoTokenizer.from_pretrained(model_path,
78
+ trust_remote_code=True)
79
+ streamer = TextStreamer(tokenizer,
80
+ skip_prompt=True,
81
+ skip_special_tokens=True)
82
+
83
+ # Convert prompt to tokens
84
+ prompt_template = """\
85
+ <|im_start|>system
86
+ {system_message}<|im_end|>
87
+ <|im_start|>user
88
+ {prompt}<|im_end|>
89
+ <|im_start|>assistant"""
90
+
91
+ prompt = "You're standing on the surface of the Earth. "\
92
+ "You walk one mile south, one mile west and one mile north. "\
93
+ "You end up exactly where you started. Where are you?"
94
+
95
+ tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
96
+ return_tensors='pt').input_ids.cuda()
97
+
98
+ # Generate output
99
+ generation_output = model.generate(tokens,
100
+ streamer=streamer,
101
+ max_new_tokens=512)
102
+
103
+ ```
104
+
105
+ ### About AWQ
106
+
107
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
108
+
109
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
110
+
111
+ It is supported by:
112
+
113
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
114
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
115
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
116
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
117
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
118
+
119
+ ## Prompt template: ChatML
120
+
121
+ ```plaintext
122
+ <|im_start|>system
123
+ {system_message}<|im_end|>
124
+ <|im_start|>user
125
+ {prompt}<|im_end|>
126
+ <|im_start|>assistant
127
+ ```
128
+
129
+ ## Other Quants
130
+
131
+ ### GGUF
132
+
133
+ GGUF versions are available [here](https://huggingface.co/macadeliccc/WestLake-7B-v2-laser-truthy-dpo-GGUF)
134
+
135
+ ### ExLlamav2
136
+
137
+ Thanks to user [bartowski](https://huggingface.co/bartowski) we now have exllamav2 quantizations in 3.5 through 8 bpw. They are available here:
138
+
139
+ + [bartowski/WestLake-7B-v2-laser-truthy-dpo-exl2](https://huggingface.co/bartowski/WestLake-7B-v2-laser-truthy-dpo-exl2)