File size: 2,102 Bytes
35bd90a
 
 
 
e406375
 
 
35bd90a
 
e406375
 
35bd90a
 
 
 
 
e406375
35bd90a
 
 
 
 
1056953
35bd90a
e406375
35bd90a
e406375
35bd90a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
base_model: openai/whisper-small
datasets:
- mozilla-foundation/common_voice_11_0
language:
- vi
license: apache-2.0
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: Whisper Small Vi - Sonkn
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Common Voice 11.0
      type: mozilla-foundation/common_voice_11_0
      config: vi
      split: None
      args: 'config: vi, split: test'
    metrics:
    - type: wer
      value: 28.775084987388965
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Vi - Sonkn

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5243
- Wer: 28.7751

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.3284        | 0.1149 | 20   | 0.5643          | 29.8388 |
| 0.2493        | 0.2299 | 40   | 0.5457          | 29.1150 |
| 0.2381        | 0.3448 | 60   | 0.5389          | 29.4550 |
| 0.1865        | 0.4598 | 80   | 0.5303          | 28.9615 |
| 0.1918        | 0.5747 | 100  | 0.5243          | 28.7751 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1