--- language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Vi - Sonkn results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: vi split: None args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 28.775084987388965 --- # Whisper Small Vi - Sonkn This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5243 - Wer: 28.7751 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.3284 | 0.1149 | 20 | 0.5643 | 29.8388 | | 0.2493 | 0.2299 | 40 | 0.5457 | 29.1150 | | 0.2381 | 0.3448 | 60 | 0.5389 | 29.4550 | | 0.1865 | 0.4598 | 80 | 0.5303 | 28.9615 | | 0.1918 | 0.5747 | 100 | 0.5243 | 28.7751 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1