File size: 3,675 Bytes
933f33d 4869469 933f33d 4869469 8d1242c 4869469 8d1242c 4869469 8d1242c 9f6cd8c 933f33d 8d1242c 78b7731 dd45369 78b7731 cf2ad4d 8d1242c e830b01 8d1242c b3dd884 8d1242c e830b01 4001f88 e830b01 4001f88 e830b01 4001f88 e830b01 4001f88 e830b01 8d1242c 78b7731 7392310 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
---
language:
- en
license: apache-2.0
library_name: adapter-transformers
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
pipeline_tag: summarization
inference: true
base_model: braindao/flan-t5-cnn
model-index:
- name: flan-t5-base
results:
- task:
type: summarization
name: Summarization
dataset:
name: samsum
type: samsum
split: validation
metrics:
- type: rogue1
value: 46.819522%
- type: rouge2
value: 20.898074%
- type: rougeL
value: 37.300937%
- type: rougeLsum
value: 37.271341%
---
# flan-t5-base-cnn-samsum-lora
This model is a fine-tuned version of [braindao/flan-t5-cnn](https://huggingface.co/braindao/flan-t5-cnn) on the [samsum](https://huggingface.co/datasets/samsum) dataset.
The base model [braindao/flan-t5-cnn](https://huggingface.co/braindao/flan-t5-cnn) is a fine-tuned verstion of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the cnn_dailymail 3.0.0 dataset.
## Model API Spaces
Please visit HF Spaces [sooolee/summarize-transcripts-gradio](https://huggingface.co/spaces/sooolee/summarize-transcripts-gradio) for Gradio API. This API takes YouTube 'Video_ID' as the input.
## Model description
* This model further finetuned [braindao/flan-t5-cnn](https://huggingface.co/braindao/flan-t5-cnn) on the more conversational samsum dataset.
* Huggingface [PEFT Library](https://github.com/huggingface/peft) LoRA (r = 16) and bitsandbytes int-8 was used to speed up training and reduce the model size.
* Only 1.7M parameters were trained (0.71% of original flan-t5-base 250M parameters).
* The model checkpoint is just 7MB.
## Intended uses & limitations
Summarize transcripts such as YouTube transcripts.
## Training and evaluation data
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
- train_loss: 1.47
### How to use
Note 'max_new_tokens=60' is used in the below example to control the length of the summary. FLAN-T5 model has max generation length = 200 and min generation length = 20 (default).
```python
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Load peft config for pre-trained checkpoint etc.
peft_model_id = "sooolee/flan-t5-base-cnn-samsum-lora"
config = PeftConfig.from_pretrained(peft_model_id)
# load base LLM model and tokenizer
model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path, device_map='auto') # load_in_8bit=True,
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id, device_map='auto')
# Tokenize the text inputs
texts = "<e.g. Part of YouTube Transcript>"
inputs = tokenizer(texts, return_tensors="pt", padding=True, ) # truncation=True
# Make inferences
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
with torch.no_grad():
output = self.model.generate(input_ids=inputs["input_ids"].to(device), max_new_tokens=60, do_sample=True, top_p=0.9)
summary = self.tokenizer.batch_decode(output.detach().cpu().numpy(), skip_special_tokens=True)
summary
```
### Framework versions
- Transformers 4.27.2
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.3
## Other
Please check out the BART-Large-CNN-Samsum model fine-tuned for the same purpose: [sooolee/bart-large-cnn-finetuned-samsum-lora](https://huggingface.co/sooolee/bart-large-cnn-finetuned-samsum-lora) |