---
license: other
base_model: beomi/Llama-3-Open-Ko-8B
tags:
- generated_from_trainer
model-index:
- name: beomi-llama3-8b-64k
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: beomi/Llama-3-Open-Ko-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: sosoai/mixed_dataset
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./beomi-llama3-8b-64k
save_safetensors: true
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: false
use_pose: true
pose_max_context_len: 65536
overrides_of_model_config:
rope_theta: 500000.0
max_position_embeddings: 65536
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
eval_sample_packing: False
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
```
# beomi-llama3-8b-64k
This model is a fine-tuned version of [beomi/Llama-3-Open-Ko-8B](https://huggingface.co/beomi/Llama-3-Open-Ko-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9960
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.6869 | 0.06 | 1 | 1.7410 |
| 1.6246 | 0.52 | 9 | 1.6575 |
| 1.4583 | 1.01 | 18 | 1.4841 |
| 1.3375 | 1.53 | 27 | 1.3299 |
| 1.171 | 2.01 | 36 | 1.1744 |
| 1.0133 | 2.53 | 45 | 0.9960 |
### Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.1.1
- Datasets 2.15.0
- Tokenizers 0.15.0