--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: Upgrade all installed packages with superuser privileges - text: Install package 'vim' as superuser - text: Remove package 'firefox' with superuser privileges - text: Change permissions of directory 'docs' to writable - text: Update package lists using superuser privileges pipeline_tag: text-classification inference: true base_model: sentence-transformers/paraphrase-mpnet-base-v2 model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.0 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 30 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:----------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------| | ls | | | cd | | | mkdir docs | | | mkdir projects | | | mkdir data | | | mkdir images | | | mkdir scripts | | | rm example.txt | | | rm temp.txt | | | rm file1 | | | rm file2 | | | rm backup.txt | | | cp file1 /destination | | | cp file2 /backup | | | cp file3 /archive | | | cp file4 /temp | | | cp file5 /images | | | mv file2 /new_location | | | mv file3 /backup | | | mv file4 /archive | | | mv file5 /temp | | | mv file6 /images | | | cat README.md | | | cat notes.txt | | | cat data.csv | | | cat script.sh | | | cat config.ini | | | grep 'pattern' data.txt | | | grep 'word' text.txt | | | grep 'keyword' document.txt | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.0 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("souvenger/NLP2Linux") # Run inference preds = model("Install package 'vim' as superuser") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 5 | 5.6667 | 9 | | Label | Training Sample Count | |:----------------------------|:----------------------| | cat README.md | 1 | | cat config.ini | 1 | | cat data.csv | 1 | | cat notes.txt | 1 | | cat script.sh | 1 | | cd | 10 | | cp file1 /destination | 1 | | cp file2 /backup | 1 | | cp file3 /archive | 1 | | cp file4 /temp | 1 | | cp file5 /images | 1 | | grep 'keyword' document.txt | 1 | | grep 'pattern' data.txt | 1 | | grep 'word' text.txt | 1 | | ls | 10 | | mkdir data | 1 | | mkdir docs | 1 | | mkdir images | 1 | | mkdir projects | 1 | | mkdir scripts | 1 | | mv file2 /new_location | 1 | | mv file3 /backup | 1 | | mv file4 /archive | 1 | | mv file5 /temp | 1 | | mv file6 /images | 1 | | rm backup.txt | 1 | | rm example.txt | 1 | | rm file1 | 1 | | rm file2 | 1 | | rm temp.txt | 1 | ### Training Hyperparameters - batch_size: (8, 8) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0042 | 1 | 0.1215 | - | | 0.2083 | 50 | 0.0232 | - | | 0.4167 | 100 | 0.01 | - | | 0.625 | 150 | 0.0044 | - | | 0.8333 | 200 | 0.0025 | - | ### Framework Versions - Python: 3.10.13 - SetFit: 1.0.3 - Sentence Transformers: 2.3.1 - Transformers: 4.37.0 - PyTorch: 2.1.2 - Datasets: 2.1.0 - Tokenizers: 0.15.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```