Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
# Load the tokenizer and model
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("neulab/UIX-Qwen2")
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained("neulab/UIX-Qwen2")
|
8 |
+
|
9 |
+
# Function to process the screenshot and prompt
|
10 |
+
def predict_coordinates(screenshot, prompt):
|
11 |
+
# Process the image and prompt here
|
12 |
+
# For now, we'll use the prompt as input (actual screenshot integration needs proper pre-processing)
|
13 |
+
|
14 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
15 |
+
outputs = model(**inputs)
|
16 |
+
|
17 |
+
# Example response (fake coordinates for now)
|
18 |
+
coordinates = {"x": 100, "y": 200} # This would come from the model output
|
19 |
+
|
20 |
+
return coordinates
|
21 |
+
|
22 |
+
# Gradio Interface
|
23 |
+
with gr.Blocks() as demo:
|
24 |
+
gr.Markdown("# UIX-Qwen2: Predict Coordinates for UI Interactions")
|
25 |
+
|
26 |
+
with gr.Row():
|
27 |
+
with gr.Column():
|
28 |
+
screenshot = gr.Image(type="pil", label="Upload Screenshot")
|
29 |
+
prompt = gr.Textbox(label="Prompt (e.g., 'Click on Submit button')")
|
30 |
+
with gr.Column():
|
31 |
+
output = gr.JSON(label="Predicted Coordinates (x, y)")
|
32 |
+
|
33 |
+
submit_button = gr.Button("Get Coordinates")
|
34 |
+
submit_button.click(predict_coordinates, inputs=[screenshot, prompt], outputs=output)
|
35 |
+
|
36 |
+
# Launch the Gradio app
|
37 |
+
demo.launch()
|