Spaces:
Running
Running
File size: 21,359 Bytes
d5d7329 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 |
from __future__ import annotations
import os
import warnings
from logging import getLogger
from multiprocessing import cpu_count
from pathlib import Path
from typing import Any
import lightning.pytorch as pl
import torch
from lightning.pytorch.accelerators import MPSAccelerator, TPUAccelerator
from lightning.pytorch.callbacks import DeviceStatsMonitor
from lightning.pytorch.loggers import TensorBoardLogger
from lightning.pytorch.strategies.ddp import DDPStrategy
from lightning.pytorch.tuner import Tuner
from torch.cuda.amp import autocast
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard.writer import SummaryWriter
import so_vits_svc_fork.f0
import so_vits_svc_fork.modules.commons as commons
import so_vits_svc_fork.utils
from . import utils
from .dataset import TextAudioCollate, TextAudioDataset
from .logger import is_notebook
from .modules.descriminators import MultiPeriodDiscriminator
from .modules.losses import discriminator_loss, feature_loss, generator_loss, kl_loss
from .modules.mel_processing import mel_spectrogram_torch
from .modules.synthesizers import SynthesizerTrn
LOG = getLogger(__name__)
torch.set_float32_matmul_precision("high")
class VCDataModule(pl.LightningDataModule):
batch_size: int
def __init__(self, hparams: Any):
super().__init__()
self.__hparams = hparams
self.batch_size = hparams.train.batch_size
if not isinstance(self.batch_size, int):
self.batch_size = 1
self.collate_fn = TextAudioCollate()
# these should be called in setup(), but we need to calculate check_val_every_n_epoch
self.train_dataset = TextAudioDataset(self.__hparams, is_validation=False)
self.val_dataset = TextAudioDataset(self.__hparams, is_validation=True)
def train_dataloader(self):
return DataLoader(
self.train_dataset,
num_workers=min(cpu_count(), self.__hparams.train.get("num_workers", 8)),
batch_size=self.batch_size,
collate_fn=self.collate_fn,
persistent_workers=True,
)
def val_dataloader(self):
return DataLoader(
self.val_dataset,
batch_size=1,
collate_fn=self.collate_fn,
)
def train(
config_path: Path | str, model_path: Path | str, reset_optimizer: bool = False
):
config_path = Path(config_path)
model_path = Path(model_path)
hparams = utils.get_backup_hparams(config_path, model_path)
utils.ensure_pretrained_model(
model_path,
hparams.model.get(
"pretrained",
{
"D_0.pth": "https://huggingface.co/therealvul/so-vits-svc-4.0-init/resolve/main/D_0.pth",
"G_0.pth": "https://huggingface.co/therealvul/so-vits-svc-4.0-init/resolve/main/G_0.pth",
},
),
)
datamodule = VCDataModule(hparams)
strategy = (
(
"ddp_find_unused_parameters_true"
if os.name != "nt"
else DDPStrategy(find_unused_parameters=True, process_group_backend="gloo")
)
if torch.cuda.device_count() > 1
else "auto"
)
LOG.info(f"Using strategy: {strategy}")
trainer = pl.Trainer(
logger=TensorBoardLogger(
model_path, "lightning_logs", hparams.train.get("log_version", 0)
),
# profiler="simple",
val_check_interval=hparams.train.eval_interval,
max_epochs=hparams.train.epochs,
check_val_every_n_epoch=None,
precision="16-mixed"
if hparams.train.fp16_run
else "bf16-mixed"
if hparams.train.get("bf16_run", False)
else 32,
strategy=strategy,
callbacks=([pl.callbacks.RichProgressBar()] if not is_notebook() else [])
+ [DeviceStatsMonitor()],
benchmark=True,
enable_checkpointing=False,
)
tuner = Tuner(trainer)
model = VitsLightning(reset_optimizer=reset_optimizer, **hparams)
# automatic batch size scaling
batch_size = hparams.train.batch_size
batch_split = str(batch_size).split("-")
batch_size = batch_split[0]
init_val = 2 if len(batch_split) <= 1 else int(batch_split[1])
max_trials = 25 if len(batch_split) <= 2 else int(batch_split[2])
if batch_size == "auto":
batch_size = "binsearch"
if batch_size in ["power", "binsearch"]:
model.tuning = True
tuner.scale_batch_size(
model,
mode=batch_size,
datamodule=datamodule,
steps_per_trial=1,
init_val=init_val,
max_trials=max_trials,
)
model.tuning = False
else:
batch_size = int(batch_size)
# automatic learning rate scaling is not supported for multiple optimizers
"""if hparams.train.learning_rate == "auto":
lr_finder = tuner.lr_find(model)
LOG.info(lr_finder.results)
fig = lr_finder.plot(suggest=True)
fig.savefig(model_path / "lr_finder.png")"""
trainer.fit(model, datamodule=datamodule)
class VitsLightning(pl.LightningModule):
def __init__(self, reset_optimizer: bool = False, **hparams: Any):
super().__init__()
self._temp_epoch = 0 # Add this line to initialize the _temp_epoch attribute
self.save_hyperparameters("reset_optimizer")
self.save_hyperparameters(*[k for k in hparams.keys()])
torch.manual_seed(self.hparams.train.seed)
self.net_g = SynthesizerTrn(
self.hparams.data.filter_length // 2 + 1,
self.hparams.train.segment_size // self.hparams.data.hop_length,
**self.hparams.model,
)
self.net_d = MultiPeriodDiscriminator(self.hparams.model.use_spectral_norm)
self.automatic_optimization = False
self.learning_rate = self.hparams.train.learning_rate
self.optim_g = torch.optim.AdamW(
self.net_g.parameters(),
self.learning_rate,
betas=self.hparams.train.betas,
eps=self.hparams.train.eps,
)
self.optim_d = torch.optim.AdamW(
self.net_d.parameters(),
self.learning_rate,
betas=self.hparams.train.betas,
eps=self.hparams.train.eps,
)
self.scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
self.optim_g, gamma=self.hparams.train.lr_decay
)
self.scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
self.optim_d, gamma=self.hparams.train.lr_decay
)
self.optimizers_count = 2
self.load(reset_optimizer)
self.tuning = False
def on_train_start(self) -> None:
if not self.tuning:
self.set_current_epoch(self._temp_epoch)
total_batch_idx = self._temp_epoch * len(self.trainer.train_dataloader)
self.set_total_batch_idx(total_batch_idx)
global_step = total_batch_idx * self.optimizers_count
self.set_global_step(global_step)
# check if using tpu or mps
if isinstance(self.trainer.accelerator, (TPUAccelerator, MPSAccelerator)):
# patch torch.stft to use cpu
LOG.warning("Using TPU/MPS. Patching torch.stft to use cpu.")
def stft(
input: torch.Tensor,
n_fft: int,
hop_length: int | None = None,
win_length: int | None = None,
window: torch.Tensor | None = None,
center: bool = True,
pad_mode: str = "reflect",
normalized: bool = False,
onesided: bool | None = None,
return_complex: bool | None = None,
) -> torch.Tensor:
device = input.device
input = input.cpu()
if window is not None:
window = window.cpu()
return torch.functional.stft(
input,
n_fft,
hop_length,
win_length,
window,
center,
pad_mode,
normalized,
onesided,
return_complex,
).to(device)
torch.stft = stft
elif "bf" in self.trainer.precision:
LOG.warning("Using bf. Patching torch.stft to use fp32.")
def stft(
input: torch.Tensor,
n_fft: int,
hop_length: int | None = None,
win_length: int | None = None,
window: torch.Tensor | None = None,
center: bool = True,
pad_mode: str = "reflect",
normalized: bool = False,
onesided: bool | None = None,
return_complex: bool | None = None,
) -> torch.Tensor:
dtype = input.dtype
input = input.float()
if window is not None:
window = window.float()
return torch.functional.stft(
input,
n_fft,
hop_length,
win_length,
window,
center,
pad_mode,
normalized,
onesided,
return_complex,
).to(dtype)
torch.stft = stft
def on_train_end(self) -> None:
self.save_checkpoints(adjust=0)
def save_checkpoints(self, adjust=1):
if self.tuning or self.trainer.sanity_checking:
return
# only save checkpoints if we are on the main device
if (
hasattr(self.device, "index")
and self.device.index != None
and self.device.index != 0
):
return
# `on_train_end` will be the actual epoch, not a -1, so we have to call it with `adjust = 0`
current_epoch = self.current_epoch + adjust
total_batch_idx = self.total_batch_idx - 1 + adjust
utils.save_checkpoint(
self.net_g,
self.optim_g,
self.learning_rate,
current_epoch,
Path(self.hparams.model_dir)
/ f"G_{total_batch_idx if self.hparams.train.get('ckpt_name_by_step', False) else current_epoch}.pth",
)
utils.save_checkpoint(
self.net_d,
self.optim_d,
self.learning_rate,
current_epoch,
Path(self.hparams.model_dir)
/ f"D_{total_batch_idx if self.hparams.train.get('ckpt_name_by_step', False) else current_epoch}.pth",
)
keep_ckpts = self.hparams.train.get("keep_ckpts", 0)
if keep_ckpts > 0:
utils.clean_checkpoints(
path_to_models=self.hparams.model_dir,
n_ckpts_to_keep=keep_ckpts,
sort_by_time=True,
)
def set_current_epoch(self, epoch: int):
LOG.info(f"Setting current epoch to {epoch}")
self.trainer.fit_loop.epoch_progress.current.completed = epoch
self.trainer.fit_loop.epoch_progress.current.processed = epoch
assert self.current_epoch == epoch, f"{self.current_epoch} != {epoch}"
def set_global_step(self, global_step: int):
LOG.info(f"Setting global step to {global_step}")
self.trainer.fit_loop.epoch_loop.manual_optimization.optim_step_progress.total.completed = (
global_step
)
self.trainer.fit_loop.epoch_loop.automatic_optimization.optim_progress.optimizer.step.total.completed = (
global_step
)
assert self.global_step == global_step, f"{self.global_step} != {global_step}"
def set_total_batch_idx(self, total_batch_idx: int):
LOG.info(f"Setting total batch idx to {total_batch_idx}")
self.trainer.fit_loop.epoch_loop.batch_progress.total.ready = (
total_batch_idx + 1
)
self.trainer.fit_loop.epoch_loop.batch_progress.total.completed = (
total_batch_idx
)
assert (
self.total_batch_idx == total_batch_idx + 1
), f"{self.total_batch_idx} != {total_batch_idx + 1}"
@property
def total_batch_idx(self) -> int:
return self.trainer.fit_loop.epoch_loop.total_batch_idx + 1
def load(self, reset_optimizer: bool = False):
latest_g_path = utils.latest_checkpoint_path(self.hparams.model_dir, "G_*.pth")
latest_d_path = utils.latest_checkpoint_path(self.hparams.model_dir, "D_*.pth")
if latest_g_path is not None and latest_d_path is not None:
try:
_, _, _, epoch = utils.load_checkpoint(
latest_g_path,
self.net_g,
self.optim_g,
reset_optimizer,
)
_, _, _, epoch = utils.load_checkpoint(
latest_d_path,
self.net_d,
self.optim_d,
reset_optimizer,
)
self._temp_epoch = epoch
self.scheduler_g.last_epoch = epoch - 1
self.scheduler_d.last_epoch = epoch - 1
except Exception as e:
raise RuntimeError("Failed to load checkpoint") from e
else:
LOG.warning("No checkpoint found. Start from scratch.")
def configure_optimizers(self):
return [self.optim_g, self.optim_d], [self.scheduler_g, self.scheduler_d]
def log_image_dict(
self, image_dict: dict[str, Any], dataformats: str = "HWC"
) -> None:
if not isinstance(self.logger, TensorBoardLogger):
warnings.warn("Image logging is only supported with TensorBoardLogger.")
return
writer: SummaryWriter = self.logger.experiment
for k, v in image_dict.items():
try:
writer.add_image(k, v, self.total_batch_idx, dataformats=dataformats)
except Exception as e:
warnings.warn(f"Failed to log image {k}: {e}")
def log_audio_dict(self, audio_dict: dict[str, Any]) -> None:
if not isinstance(self.logger, TensorBoardLogger):
warnings.warn("Audio logging is only supported with TensorBoardLogger.")
return
writer: SummaryWriter = self.logger.experiment
for k, v in audio_dict.items():
writer.add_audio(
k,
v.float(),
self.total_batch_idx,
sample_rate=self.hparams.data.sampling_rate,
)
def log_dict_(self, log_dict: dict[str, Any], **kwargs) -> None:
if not isinstance(self.logger, TensorBoardLogger):
warnings.warn("Logging is only supported with TensorBoardLogger.")
return
writer: SummaryWriter = self.logger.experiment
for k, v in log_dict.items():
writer.add_scalar(k, v, self.total_batch_idx)
kwargs["logger"] = False
self.log_dict(log_dict, **kwargs)
def log_(self, key: str, value: Any, **kwargs) -> None:
self.log_dict_({key: value}, **kwargs)
def training_step(self, batch: dict[str, torch.Tensor], batch_idx: int) -> None:
self.net_g.train()
self.net_d.train()
# get optims
optim_g, optim_d = self.optimizers()
# Generator
# train
self.toggle_optimizer(optim_g)
c, f0, spec, mel, y, g, lengths, uv = batch
(
y_hat,
y_hat_mb,
ids_slice,
z_mask,
(z, z_p, m_p, logs_p, m_q, logs_q),
pred_lf0,
norm_lf0,
lf0,
) = self.net_g(c, f0, uv, spec, g=g, c_lengths=lengths, spec_lengths=lengths)
y_mel = commons.slice_segments(
mel,
ids_slice,
self.hparams.train.segment_size // self.hparams.data.hop_length,
)
y_hat_mel = mel_spectrogram_torch(y_hat.squeeze(1), self.hparams)
y_mel = y_mel[..., : y_hat_mel.shape[-1]]
y = commons.slice_segments(
y,
ids_slice * self.hparams.data.hop_length,
self.hparams.train.segment_size,
)
y = y[..., : y_hat.shape[-1]]
# generator loss
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = self.net_d(y, y_hat)
with autocast(enabled=False):
loss_mel = F.l1_loss(y_mel, y_hat_mel) * self.hparams.train.c_mel
loss_kl = (
kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * self.hparams.train.c_kl
)
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_lf0 = F.mse_loss(pred_lf0, lf0)
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl + loss_lf0
# MB-iSTFT-VITS
loss_subband = torch.tensor(0.0)
if self.hparams.model.get("type_") == "mb-istft":
from .modules.decoders.mb_istft import PQMF, subband_stft_loss
y_mb = PQMF(y.device, self.hparams.model.subbands).analysis(y)
loss_subband = subband_stft_loss(self.hparams, y_mb, y_hat_mb)
loss_gen_all += loss_subband
# log loss
self.log_("lr", self.optim_g.param_groups[0]["lr"])
self.log_dict_(
{
"loss/g/total": loss_gen_all,
"loss/g/fm": loss_fm,
"loss/g/mel": loss_mel,
"loss/g/kl": loss_kl,
"loss/g/lf0": loss_lf0,
},
prog_bar=True,
)
if self.hparams.model.get("type_") == "mb-istft":
self.log_("loss/g/subband", loss_subband)
if self.total_batch_idx % self.hparams.train.log_interval == 0:
self.log_image_dict(
{
"slice/mel_org": utils.plot_spectrogram_to_numpy(
y_mel[0].data.cpu().float().numpy()
),
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
y_hat_mel[0].data.cpu().float().numpy()
),
"all/mel": utils.plot_spectrogram_to_numpy(
mel[0].data.cpu().float().numpy()
),
"all/lf0": so_vits_svc_fork.utils.plot_data_to_numpy(
lf0[0, 0, :].cpu().float().numpy(),
pred_lf0[0, 0, :].detach().cpu().float().numpy(),
),
"all/norm_lf0": so_vits_svc_fork.utils.plot_data_to_numpy(
lf0[0, 0, :].cpu().float().numpy(),
norm_lf0[0, 0, :].detach().cpu().float().numpy(),
),
}
)
accumulate_grad_batches = self.hparams.train.get("accumulate_grad_batches", 1)
should_update = (
batch_idx + 1
) % accumulate_grad_batches == 0 or self.trainer.is_last_batch
# optimizer
self.manual_backward(loss_gen_all / accumulate_grad_batches)
if should_update:
self.log_(
"grad_norm_g", commons.clip_grad_value_(self.net_g.parameters(), None)
)
optim_g.step()
optim_g.zero_grad()
self.untoggle_optimizer(optim_g)
# Discriminator
# train
self.toggle_optimizer(optim_d)
y_d_hat_r, y_d_hat_g, _, _ = self.net_d(y, y_hat.detach())
# discriminator loss
with autocast(enabled=False):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
y_d_hat_r, y_d_hat_g
)
loss_disc_all = loss_disc
# log loss
self.log_("loss/d/total", loss_disc_all, prog_bar=True)
# optimizer
self.manual_backward(loss_disc_all / accumulate_grad_batches)
if should_update:
self.log_(
"grad_norm_d", commons.clip_grad_value_(self.net_d.parameters(), None)
)
optim_d.step()
optim_d.zero_grad()
self.untoggle_optimizer(optim_d)
# end of epoch
if self.trainer.is_last_batch:
self.scheduler_g.step()
self.scheduler_d.step()
def validation_step(self, batch, batch_idx):
# avoid logging with wrong global step
if self.global_step == 0:
return
with torch.no_grad():
self.net_g.eval()
c, f0, _, mel, y, g, _, uv = batch
y_hat = self.net_g.infer(c, f0, uv, g=g)
y_hat_mel = mel_spectrogram_torch(y_hat.squeeze(1).float(), self.hparams)
self.log_audio_dict(
{f"gen/audio_{batch_idx}": y_hat[0], f"gt/audio_{batch_idx}": y[0]}
)
self.log_image_dict(
{
"gen/mel": utils.plot_spectrogram_to_numpy(
y_hat_mel[0].cpu().float().numpy()
),
"gt/mel": utils.plot_spectrogram_to_numpy(
mel[0].cpu().float().numpy()
),
}
)
def on_validation_end(self) -> None:
self.save_checkpoints()
|