Spaces:
Running
Running
"""from logging import getLogger | |
import torch | |
import torch.utils.data | |
import torchaudio | |
LOG = getLogger(__name__) | |
from ..hparams import HParams | |
def spectrogram_torch(audio: torch.Tensor, hps: HParams) -> torch.Tensor: | |
return torchaudio.transforms.Spectrogram( | |
n_fft=hps.data.filter_length, | |
win_length=hps.data.win_length, | |
hop_length=hps.data.hop_length, | |
power=1.0, | |
window_fn=torch.hann_window, | |
normalized=False, | |
).to(audio.device)(audio) | |
def spec_to_mel_torch(spec: torch.Tensor, hps: HParams) -> torch.Tensor: | |
return torchaudio.transforms.MelScale( | |
n_mels=hps.data.n_mel_channels, | |
sample_rate=hps.data.sampling_rate, | |
f_min=hps.data.mel_fmin, | |
f_max=hps.data.mel_fmax, | |
).to(spec.device)(spec) | |
def mel_spectrogram_torch(audio: torch.Tensor, hps: HParams) -> torch.Tensor: | |
return torchaudio.transforms.MelSpectrogram( | |
sample_rate=hps.data.sampling_rate, | |
n_fft=hps.data.filter_length, | |
n_mels=hps.data.n_mel_channels, | |
win_length=hps.data.win_length, | |
hop_length=hps.data.hop_length, | |
f_min=hps.data.mel_fmin, | |
f_max=hps.data.mel_fmax, | |
power=1.0, | |
window_fn=torch.hann_window, | |
normalized=False, | |
).to(audio.device)(audio)""" | |
from logging import getLogger | |
import torch | |
import torch.utils.data | |
from librosa.filters import mel as librosa_mel_fn | |
LOG = getLogger(__name__) | |
MAX_WAV_VALUE = 32768.0 | |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): | |
""" | |
PARAMS | |
------ | |
C: compression factor | |
""" | |
return torch.log(torch.clamp(x, min=clip_val) * C) | |
def dynamic_range_decompression_torch(x, C=1): | |
""" | |
PARAMS | |
------ | |
C: compression factor used to compress | |
""" | |
return torch.exp(x) / C | |
def spectral_normalize_torch(magnitudes): | |
output = dynamic_range_compression_torch(magnitudes) | |
return output | |
def spectral_de_normalize_torch(magnitudes): | |
output = dynamic_range_decompression_torch(magnitudes) | |
return output | |
mel_basis = {} | |
hann_window = {} | |
def spectrogram_torch(y, hps, center=False): | |
if torch.min(y) < -1.0: | |
LOG.info("min value is ", torch.min(y)) | |
if torch.max(y) > 1.0: | |
LOG.info("max value is ", torch.max(y)) | |
n_fft = hps.data.filter_length | |
hop_size = hps.data.hop_length | |
win_size = hps.data.win_length | |
global hann_window | |
dtype_device = str(y.dtype) + "_" + str(y.device) | |
wnsize_dtype_device = str(win_size) + "_" + dtype_device | |
if wnsize_dtype_device not in hann_window: | |
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to( | |
dtype=y.dtype, device=y.device | |
) | |
y = torch.nn.functional.pad( | |
y.unsqueeze(1), | |
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), | |
mode="reflect", | |
) | |
y = y.squeeze(1) | |
spec = torch.stft( | |
y, | |
n_fft, | |
hop_length=hop_size, | |
win_length=win_size, | |
window=hann_window[wnsize_dtype_device], | |
center=center, | |
pad_mode="reflect", | |
normalized=False, | |
onesided=True, | |
return_complex=False, | |
) | |
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) | |
return spec | |
def spec_to_mel_torch(spec, hps): | |
sampling_rate = hps.data.sampling_rate | |
n_fft = hps.data.filter_length | |
num_mels = hps.data.n_mel_channels | |
fmin = hps.data.mel_fmin | |
fmax = hps.data.mel_fmax | |
global mel_basis | |
dtype_device = str(spec.dtype) + "_" + str(spec.device) | |
fmax_dtype_device = str(fmax) + "_" + dtype_device | |
if fmax_dtype_device not in mel_basis: | |
mel = librosa_mel_fn( | |
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax | |
) | |
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to( | |
dtype=spec.dtype, device=spec.device | |
) | |
spec = torch.matmul(mel_basis[fmax_dtype_device], spec) | |
spec = spectral_normalize_torch(spec) | |
return spec | |
def mel_spectrogram_torch(y, hps, center=False): | |
sampling_rate = hps.data.sampling_rate | |
n_fft = hps.data.filter_length | |
num_mels = hps.data.n_mel_channels | |
fmin = hps.data.mel_fmin | |
fmax = hps.data.mel_fmax | |
hop_size = hps.data.hop_length | |
win_size = hps.data.win_length | |
if torch.min(y) < -1.0: | |
LOG.info(f"min value is {torch.min(y)}") | |
if torch.max(y) > 1.0: | |
LOG.info(f"max value is {torch.max(y)}") | |
global mel_basis, hann_window | |
dtype_device = str(y.dtype) + "_" + str(y.device) | |
fmax_dtype_device = str(fmax) + "_" + dtype_device | |
wnsize_dtype_device = str(win_size) + "_" + dtype_device | |
if fmax_dtype_device not in mel_basis: | |
mel = librosa_mel_fn( | |
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax | |
) | |
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to( | |
dtype=y.dtype, device=y.device | |
) | |
if wnsize_dtype_device not in hann_window: | |
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to( | |
dtype=y.dtype, device=y.device | |
) | |
y = torch.nn.functional.pad( | |
y.unsqueeze(1), | |
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), | |
mode="reflect", | |
) | |
y = y.squeeze(1) | |
spec = torch.stft( | |
y, | |
n_fft, | |
hop_length=hop_size, | |
win_length=win_size, | |
window=hann_window[wnsize_dtype_device], | |
center=center, | |
pad_mode="reflect", | |
normalized=False, | |
onesided=True, | |
return_complex=False, | |
) | |
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) | |
spec = torch.matmul(mel_basis[fmax_dtype_device], spec) | |
spec = spectral_normalize_torch(spec) | |
return spec | |