5m4ck3r commited on
Commit
e180e59
1 Parent(s): 959857a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -1
app.py CHANGED
@@ -1,3 +1,27 @@
 
 
1
  import gradio as gr
2
 
3
- gr.Interface.load("models/microsoft/DialoGPT-large").launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer
2
+ import torch
3
  import gradio as gr
4
 
5
+ tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
6
+ model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
7
+
8
+ # Initialize chat history
9
+ chat_history_ids = None
10
+
11
+ def chat_cpu(user_input):
12
+ global chat_history_ids
13
+ # Encode the new user input, add the eos_token, and return a tensor in PyTorch
14
+ new_user_input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt')
15
+
16
+ # Append the new user input tokens to the chat history
17
+ bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if chat_history_ids is not None else new_user_input_ids
18
+
19
+ # Generate a response while limiting the total chat history to 1000 tokens
20
+ chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
21
+
22
+ # Pretty print last output tokens from bot
23
+ response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
24
+ return "DialoGPT: {}".format(response)
25
+
26
+ iface = gr.Interface(fn=chat_cpu, inputs="text", outputs="text")
27
+ iface.launch(share=True)