from transformers import AutoModelForCausalLM, AutoTokenizer import torch import gradio as gr tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large") model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large") # Initialize chat history chat_history_ids = None def chat_cpu(user_input): global chat_history_ids # Encode the new user input, add the eos_token, and return a tensor in PyTorch new_user_input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt') # Append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if chat_history_ids is not None else new_user_input_ids # Generate a response while limiting the total chat history to 1000 tokens chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # Pretty print last output tokens from bot response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) return "DialoGPT: {}".format(response) iface = gr.Interface(fn=chat_cpu, inputs="text", outputs="text") iface.launch(share=True)