import torch from transformers import pipeline, VitsModel, VitsTokenizer import numpy as np import gradio as gr device = "cuda:0" if torch.cuda.is_available() else "cpu" # Load Whisper-small #pipe = pipeline("automatic-speech-recognition", # model="openai/whisper-small", # device=device #) # Load Distil-Whisper-large pipe = pipeline("automatic-speech-recognition", model="distil-whisper/distil-large-v2", device=device ) # Load the model checkpoint and tokenizer model = VitsModel.from_pretrained("Matthijs/mms-tts-fra") tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-fra") # Define a function to translate an audio, in French here def translate(audio): outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "fr"}) return outputs["text"] # Define function to generate the waveform output def synthesise(text): inputs = tokenizer(text, return_tensors="pt") input_ids = inputs["input_ids"] with torch.no_grad(): outputs = model(input_ids) return outputs.audio[0] # Define the pipeline def speech_to_speech_translation(audio): translated_text = translate(audio) synthesised_speech = synthesise(translated_text) synthesised_speech = ( synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech # Define the title etc title = "Cascaded STST" description = """ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in French. Demo uses OpenAI's [Whisper Small](https://huggingface.co/openai/whisper-small) model for speech translation, and Facebook's [MMS TTS](https://huggingface.co/facebook/mms-tts) model, finetuned by [Matthijs](https://huggingface.co/Matthijs), for text-to-speech: ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()