import gradio as gr from attack import Attacker import argparse def do_attack(img, eps, step_size, steps, progress=gr.Progress()): args=argparse.Namespace() args.out_dir='./' args.target='auto' args.eps=eps args.step_size=step_size args.steps=steps args.test_atk=False step = progress.tqdm(range(steps)) def pdg_prog(ori_images, images, labels): step.update(1) attacker = Attacker(args, pgd_callback=pdg_prog) atk_img, noise = attacker.attack_(img) attacker.save_image(img, noise, 'out.png') return 'out_atk.png' with gr.Blocks(title="Anime AI Detect Fucker Demo", theme="dark") as demo: gr.HTML('github repo') with gr.Row(): with gr.Column(): with gr.Row(): eps = gr.Slider(label="eps (Noise intensity)", minimum=1, maximum=16, step=1, value=1) step_size = gr.Slider(label="Noise step size", minimum=0.001, maximum=16, step=0.001, value=0.136) with gr.Row(): steps = gr.Slider(label="step count", minimum=1, maximum=100, step=1, value=20) model_name = gr.Dropdown(label="attack target", choices=["auto", "human", "ai"], interactive=True, value="auto", show_label=True) input_image = gr.Image(label="Clean Image", type="pil") atk_btn = gr.Button("Attack") with gr.Column(): output_image = gr.Image(label="Attacked Image") atk_btn.click(fn=do_attack, inputs=[input_image, eps, step_size, steps], outputs=output_image) demo.launch()