File size: 5,130 Bytes
5195c9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236bf96
5195c9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import torch
import numpy as np
import os
from huggingface_hub import login, upload_folder
from datasets import load_dataset, Audio
from transformers.integrations import TensorBoardCallback
from transformers import (
    Wav2Vec2FeatureExtractor, AutoModelForAudioClassification, 
    Trainer, TrainingArguments,
    EarlyStoppingCallback
)
import json
# SE USA FLOAT32 EN EL MODELO ORIGINAL
MODEL = "ntu-spml/distilhubert" # modelo base utilizado, para usar otro basta con cambiar esto
FEATURE_EXTRACTOR = Wav2Vec2FeatureExtractor.from_pretrained(MODEL)
seed = 123
MAX_DURATION = 1.00
SAMPLING_RATE = FEATURE_EXTRACTOR.sampling_rate # 16000 # antes estaba float16
access_token = os.getenv('HF_ACCESS_TOKEN')
config_file = "models_config.json"
clasificador = "class"
monitor = "mon"

def seed_everything():
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':16384:8'

def preprocess_audio(audio_arrays, batch=True):
    if batch:
        audios = [x["array"] for x in audio_arrays["audio"]] # para usar aquí
    else:
        audios = [audio_arrays] # para usar en realtime.py
    inputs = Wav2Vec2FeatureExtractor.from_pretrained(MODEL)(
        raw_speech=audios,
        sampling_rate=SAMPLING_RATE,
        return_tensors="pt", # Devolver tensores de PyTorch
        max_length=int(SAMPLING_RATE * MAX_DURATION), # Necesario para truncation
        truncation=True, # Muchísimo más rápido. 
        padding=True, # Vectores igual longitud
        do_normalize=True, # No afecta 1ª época, no sé si necesario
        # return_attention_mask=True, # Empeora 1ª época. No sé si necesario
        padding_value=0.0, # No afecta 1ª época, no sé si necesario
        float=32 # No afecta 1ª época, no sé si necesario
        )
    return inputs

def load_and_prepare_dataset(dataset_path):
    dataset = load_dataset(dataset_path, split="train") # Split para que no ponga train de primeras
    # dataset = dataset.cast_column("audio", Audio(sampling_rate=SAMPLING_RATE)) # Da mejor accuracy pero creo que cambia el preprocesado.
    encoded_dataset = dataset.map(preprocess_audio, remove_columns=["audio"], batched=True) # num_proc hace q no vaya realtime
    labels = encoded_dataset.features["label"].names
    label2id = {label: str(i) for i, label in enumerate(labels)}
    id2label = {str(i): label for i, label in enumerate(labels)}
    encoded_dataset = encoded_dataset.train_test_split(test_size=0.2, seed=seed, stratify_by_column="label")    
    return encoded_dataset, label2id, id2label

def load_model(num_labels, label2id, id2label):
    model = AutoModelForAudioClassification.from_pretrained(
        MODEL,
        num_labels=num_labels,
        label2id=label2id,
        id2label=id2label
    )
    return model

def model_params(dataset_path):
    login(token, add_to_git_credential=True)
    seed_everything()
    encoded_dataset, label2id, id2label = load_and_prepare_dataset(dataset_path)
    model = load_model(len(id2label), label2id, id2label)
    return model, encoded_dataset, id2label

def compute_metrics(eval_pred):
    predictions = np.argmax(eval_pred.predictions, axis=1)
    references = eval_pred.label_ids
    return {
        "accuracy": np.mean(predictions == references),
    }

def model_training(training_args, output_dir, dataset_path):
    model, encoded_dataset, _ = model_params(dataset_path)
    tensorboard_callback = TensorBoardCallback()
    early_stopping_callback = EarlyStoppingCallback(early_stopping_patience=3)
    trainer = Trainer(
        model=model,
        args=training_args,
        compute_metrics=compute_metrics,
        train_dataset=encoded_dataset["train"],
        eval_dataset=encoded_dataset["test"],
        callbacks=[tensorboard_callback, early_stopping_callback]
    )
    torch.cuda.empty_cache() # liberar memoria de la GPU
    trainer.train() # se pueden modificar los parámetros para continuar el train
    trainer.push_to_hub(token=token) # Subir modelo a mi cuenta. Necesario para hacer la predicción, no sé por qué.
    trainer.save_model(output_dir) # para subir el modelo a Hugging Face. Necesario para hacer la predicción, no sé por qué.
    os.makedirs(output_dir, exist_ok=True) # Crear carpeta con el modelo si no existe
    upload_folder(repo_id=f"A-POR-LOS-8000/{output_dir}",folder_path=output_dir, token=token) # subir modelo a organización

def load_config(model_name):
    with open(config_file, 'r') as f:
        config = json.load(f)
    model_config = config[model_name]
    training_args = TrainingArguments(**model_config["training_args"])
    model_config["training_args"] = training_args
    return model_config

if __name__ == "__main__":
    config = load_config(clasificador) # PARA CAMBIAR MODELOS
    # config = load_config(monitor) # PARA CAMBI
    training_args = config["training_args"]
    output_dir = config["output_dir"]
    dataset_path = config["dataset_path"]
    model_training(training_args, output_dir, dataset_path)