Spaces:
Sleeping
Sleeping
File size: 8,497 Bytes
1e6dc54 5cf41d0 ace06e3 1e6dc54 cc3562b 6d1143c a1c7d58 1e6dc54 2ca1b49 ace06e3 1e6dc54 ace06e3 ebf42ac ace06e3 1e6dc54 ace06e3 1e6dc54 ace06e3 ebf42ac ace06e3 ebf42ac ace06e3 1e6dc54 ace06e3 1e6dc54 ace06e3 ebf42ac ace06e3 1e6dc54 ace06e3 ebf42ac ace06e3 1e6dc54 ace06e3 1e6dc54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import os
import torch
import gradio as gr
from huggingface_hub import InferenceClient
from model import model_params, AudioDataset
token = os.getenv("HF_TOKEN")
# dataset_path = f"data/baby_cry_detection" # PARA MONITOR
dataset_path = f"data/mixed_data" # PARA CLASIFICADOR
model, _, _, id2label = model_params(dataset_path)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# Usar a GPU o CPU
model.to(device)# Usar a GPU o CPU
client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct", token=token)
# client = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407", token=token)
def predict(audio_path):
audio_dataset = AudioDataset(dataset_path, {})
inputs = audio_dataset.preprocess_audio(audio_path)
inputs = {"input_values": inputs.to(device).unsqueeze(0)}
with torch.no_grad():
outputs = model(**inputs)
predicted_class_ids = outputs.logits.argmax(-1)
label = id2label[predicted_class_ids.item()]
return label
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p): # Creo que lo importante para el modelo
token = message.choices[0].delta.content
response += token
yield response
def cambiar_pestaña():
return gr.update(visible=False), gr.update(visible=True)
my_theme = gr.themes.Soft(
primary_hue="emerald",
secondary_hue="green",
neutral_hue="slate",
text_size="sm",
spacing_size="sm",
font=[gr.themes.GoogleFont('Nunito'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
font_mono=[gr.themes.GoogleFont('Nunito'), 'ui-monospace', 'Consolas', 'monospace'],
).set(
body_background_fill='*neutral_50',
body_text_color='*neutral_600',
body_text_size='*text_sm',
embed_radius='*radius_md',
shadow_drop='*shadow_spread',
shadow_spread='*button_shadow_active'
)
with gr.Blocks(theme=my_theme) as demo:
with gr.Column(visible=True, elem_id="pantalla-inicial") as pantalla_inicial:
gr.HTML(
"""
<style>
@import url('https://fonts.googleapis.com/css2?family=Lobster&display=swap');
@import url('https://fonts.googleapis.com/css2?family=Roboto&display=swap');
h1 {
font-family: 'Lobster', cursive;
font-size: 5em !important;
text-align: center;
margin: 0;
}
.gr-button {
background-color: #4CAF50 !important;
color: white !important;
border: none;
padding: 15px 32px;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 16px;
margin: 4px 2px;
cursor: pointer;
border-radius: 12px;
}
.gr-button:hover {
background-color: #45a049;
}
h2 {
font-family: 'Lobster', cursive;
font-size: 3em !important;
text-align: center;
margin: 0;
}
p.slogan, h4, p, h3 {
font-family: 'Roboto', sans-serif;
text-align: center;
}
</style>
<h1>Iremia</h1>
<h4 style='text-align: center; font-size: 1.5em'>Tu aliado para el bienestar de tu bebé</h4>
"""
)
gr.Markdown(
"<h4 style='text-align: left; font-size: 1.5em;'>¿Qué es Iremia?</h4>"
)
gr.Markdown(
"<p style='text-align: left'>Iremia es un proyecto llevado a cabo por un grupo de estudiantes interesados en el desarrollo de modelos de inteligencia artificial, enfocados específicamente en casos de uso relevantes para ayudar a cuidar a los más pequeños de la casa.</p>"
)
gr.Markdown(
"<h4 style='text-align: left; font-size: 1.5em;'>Nuestra misión</h4>"
)
gr.Markdown(
"<p style='text-align: left'>Sabemos que la paternidad puede suponer un gran desafío. Nuestra misión es brindarles a todos los padres unas herramientas de última tecnología que los ayuden a navegar esos primeros meses de vida tan cruciales en el desarrollo de sus pequeños.</p>"
)
gr.Markdown(
"<h4 style='text-align: left; font-size: 1.5em;'>¿Qué ofrece Iremia?</h4>"
)
gr.Markdown(
"<p style='text-align: left'>Iremia ofrece dos funcionalidades muy interesantes:</p>"
)
gr.Markdown(
"<p style='text-align: left'>Predictor: Con nuestro modelo de inteligencia artificial, somos capaces de predecir por qué tu hijo de menos de 2 años está llorando. Además, tendrás acceso a un asistente personal para consultar cualquier duda que tengas sobre el cuidado de tu pequeño.</p>"
)
gr.Markdown(
"<p style='text-align: left'>Monitor: Nuestro monitor no es como otros que hay en el mercado, ya que es capaz de reconocer si un sonido es un llanto del bebé o no, y si está llorando, predice automáticamente la causa, lo cual te brindará la tranquilidad de saber siempre qué pasa con tu pequeño y te ahorrará tiempo y muchas horas de sueño.</p>"
)
with gr.Row():
with gr.Column():
gr.Markdown("<h2>Predictor</h2>")
boton_pagina_1 = gr.Button("Prueba el predictor")
gr.Markdown("<p>Descubre por qué llora tu bebé y resuelve dudas sobre su cuidado con nuestro Iremia assistant</p>")
with gr.Column():
gr.Markdown("<h2>Monitor</h2>")
boton_pagina_2 = gr.Button("Prueba el monitor")
gr.Markdown("<p>Un monitor inteligente que detecta si tu hijo está llorando y te indica el motivo antes de que puedas levantarte del sofá</p>")
with gr.Column(visible=False) as pagina_1:
with gr.Row():
with gr.Column():
gr.Markdown("<h2>Predictor</h2>")
audio_input = gr.Audio(
min_length=1.0,
format="wav",
label="Baby recorder",
type="filepath", # Para no usar numpy y preprocesar siempre igual
)
classify_btn = gr.Button("¿Por qué llora?")
classification_output = gr.Textbox(label="Tu bebé llora por:")
classify_btn.click(predict, inputs=audio_input, outputs=classification_output)
with gr.Column():
gr.Markdown("<h2>Assistant</h2>")
system_message = "You are a Chatbot specialized in baby health and care."
max_tokens = 512
temperature = 0.7
top_p = 0.95
chatbot = gr.ChatInterface(
respond, # TODO: Cambiar para que argumentos estén aquí metidos
additional_inputs=[
gr.State(value=system_message),
gr.State(value=max_tokens),
gr.State(value=temperature),
gr.State(value=top_p)
],
)
gr.Markdown("Este chatbot no sustituye a un profesional de la salud. Ante cualquier preocupación o duda, consulta con tu pediatra.")
boton_volver_inicio_1 = gr.Button("Volver a la pantalla inicial").click(cambiar_pestaña, outputs=[pagina_1, pantalla_inicial])
with gr.Column(visible=False) as pagina_2:
gr.Markdown("<h2>Monitor</h2>")
gr.Markdown("Contenido de la Página 2")
boton_volver_inicio_2 = gr.Button("Volver a la pantalla inicial").click(cambiar_pestaña, outputs=[pagina_2, pantalla_inicial])
boton_pagina_1.click(cambiar_pestaña, outputs=[pantalla_inicial, pagina_1])
boton_pagina_2.click(cambiar_pestaña, outputs=[pantalla_inicial, pagina_2])
demo.launch()
|