CHATBOT / model.py
Marcos12886's picture
Update model.py
11873b7 verified
raw
history blame
5.12 kB
import torch
import numpy as np
import os
from huggingface_hub import login, upload_folder
from datasets import load_dataset, Audio
from transformers.integrations import TensorBoardCallback
from transformers import (
Wav2Vec2FeatureExtractor, AutoModelForAudioClassification,
Trainer, TrainingArguments,
EarlyStoppingCallback
)
import json
# SE USA FLOAT32 EN EL MODELO ORIGINAL
MODEL = "ntu-spml/distilhubert" # modelo base utilizado, para usar otro basta con cambiar esto
FEATURE_EXTRACTOR = Wav2Vec2FeatureExtractor.from_pretrained(MODEL)
seed = 123
MAX_DURATION = 1.00
SAMPLING_RATE = FEATURE_EXTRACTOR.sampling_rate # 16000 # antes estaba float16
token = os.getenv('HF_ACCESS_TOKEN')
config_file = "models_config.json"
clasificador = "class"
monitor = "mon"
def seed_everything():
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':16384:8'
def preprocess_audio(audio_arrays, batch=True):
if batch:
audios = [x["array"] for x in audio_arrays["audio"]] # para usar aquí
else:
audios = [audio_arrays] # para usar en realtime.py
inputs = Wav2Vec2FeatureExtractor.from_pretrained(MODEL)(
raw_speech=audios,
sampling_rate=SAMPLING_RATE,
return_tensors="pt", # Devolver tensores de PyTorch
max_length=int(SAMPLING_RATE * MAX_DURATION), # Necesario para truncation
truncation=True, # Muchísimo más rápido.
padding=True, # Vectores igual longitud
do_normalize=True, # No afecta 1ª época, no sé si necesario
# return_attention_mask=True, # Empeora 1ª época. No sé si necesario
padding_value=0.0, # No afecta 1ª época, no sé si necesario
float=32 # No afecta 1ª época, no sé si necesario
)
return inputs
def load_and_prepare_dataset(dataset_path):
dataset = load_dataset(dataset_path, split="train") # Split para que no ponga train de primeras
# dataset = dataset.cast_column("audio", Audio(sampling_rate=SAMPLING_RATE)) # Da mejor accuracy pero creo que cambia el preprocesado.
encoded_dataset = dataset.map(preprocess_audio, remove_columns=["audio"], batched=True) # num_proc hace q no vaya realtime
labels = encoded_dataset.features["label"].names
label2id = {label: str(i) for i, label in enumerate(labels)}
id2label = {str(i): label for i, label in enumerate(labels)}
encoded_dataset = encoded_dataset.train_test_split(test_size=0.2, seed=seed, stratify_by_column="label")
return encoded_dataset, label2id, id2label
def load_model(num_labels, label2id, id2label):
model = AutoModelForAudioClassification.from_pretrained(
MODEL,
num_labels=num_labels,
label2id=label2id,
id2label=id2label
)
return model
def model_params(dataset_path):
login(token, add_to_git_credential=True)
seed_everything()
encoded_dataset, label2id, id2label = load_and_prepare_dataset(dataset_path)
model = load_model(len(id2label), label2id, id2label)
return model, encoded_dataset, id2label
def compute_metrics(eval_pred):
predictions = np.argmax(eval_pred.predictions, axis=1)
references = eval_pred.label_ids
return {
"accuracy": np.mean(predictions == references),
}
def model_training(training_args, output_dir, dataset_path):
model, encoded_dataset, _ = model_params(dataset_path)
tensorboard_callback = TensorBoardCallback()
early_stopping_callback = EarlyStoppingCallback(early_stopping_patience=3)
trainer = Trainer(
model=model,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=encoded_dataset["train"],
eval_dataset=encoded_dataset["test"],
callbacks=[tensorboard_callback, early_stopping_callback]
)
torch.cuda.empty_cache() # liberar memoria de la GPU
trainer.train() # se pueden modificar los parámetros para continuar el train
trainer.push_to_hub(token=token) # Subir modelo a mi cuenta. Necesario para hacer la predicción, no sé por qué.
trainer.save_model(output_dir) # para subir el modelo a Hugging Face. Necesario para hacer la predicción, no sé por qué.
os.makedirs(output_dir, exist_ok=True) # Crear carpeta con el modelo si no existe
upload_folder(repo_id=f"A-POR-LOS-8000/{output_dir}",folder_path=output_dir, token=token) # subir modelo a organización
def load_config(model_name):
with open(config_file, 'r') as f:
config = json.load(f)
model_config = config[model_name]
training_args = TrainingArguments(**model_config["training_args"])
model_config["training_args"] = training_args
return model_config
if __name__ == "__main__":
config = load_config(clasificador) # PARA CAMBIAR MODELOS
# config = load_config(monitor) # PARA CAMBI
training_args = config["training_args"]
output_dir = config["output_dir"]
dataset_path = config["dataset_path"]
model_training(training_args, output_dir, dataset_path)