Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
import os | |
from huggingface_hub import login, upload_folder | |
from datasets import load_dataset, Audio | |
from transformers.integrations import TensorBoardCallback | |
from transformers import ( | |
Wav2Vec2FeatureExtractor, AutoModelForAudioClassification, | |
Trainer, TrainingArguments, | |
EarlyStoppingCallback | |
) | |
import json | |
# SE USA FLOAT32 EN EL MODELO ORIGINAL | |
MODEL = "ntu-spml/distilhubert" # modelo base utilizado, para usar otro basta con cambiar esto | |
FEATURE_EXTRACTOR = Wav2Vec2FeatureExtractor.from_pretrained(MODEL) | |
seed = 123 | |
MAX_DURATION = 1.00 | |
SAMPLING_RATE = FEATURE_EXTRACTOR.sampling_rate # 16000 # antes estaba float16 | |
token = os.getenv('HF_ACCESS_TOKEN') | |
config_file = "models_config.json" | |
clasificador = "class" | |
monitor = "mon" | |
def seed_everything(): | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':16384:8' | |
def preprocess_audio(audio_arrays, batch=True): | |
if batch: | |
audios = [x["array"] for x in audio_arrays["audio"]] # para usar aquí | |
else: | |
audios = [audio_arrays] # para usar en realtime.py | |
inputs = Wav2Vec2FeatureExtractor.from_pretrained(MODEL)( | |
raw_speech=audios, | |
sampling_rate=SAMPLING_RATE, | |
return_tensors="pt", # Devolver tensores de PyTorch | |
max_length=int(SAMPLING_RATE * MAX_DURATION), # Necesario para truncation | |
truncation=True, # Muchísimo más rápido. | |
padding=True, # Vectores igual longitud | |
do_normalize=True, # No afecta 1ª época, no sé si necesario | |
# return_attention_mask=True, # Empeora 1ª época. No sé si necesario | |
padding_value=0.0, # No afecta 1ª época, no sé si necesario | |
float=32 # No afecta 1ª época, no sé si necesario | |
) | |
return inputs | |
def load_and_prepare_dataset(dataset_path): | |
dataset = load_dataset(dataset_path, split="train") # Split para que no ponga train de primeras | |
# dataset = dataset.cast_column("audio", Audio(sampling_rate=SAMPLING_RATE)) # Da mejor accuracy pero creo que cambia el preprocesado. | |
encoded_dataset = dataset.map(preprocess_audio, remove_columns=["audio"], batched=True) # num_proc hace q no vaya realtime | |
labels = encoded_dataset.features["label"].names | |
label2id = {label: str(i) for i, label in enumerate(labels)} | |
id2label = {str(i): label for i, label in enumerate(labels)} | |
encoded_dataset = encoded_dataset.train_test_split(test_size=0.2, seed=seed, stratify_by_column="label") | |
return encoded_dataset, label2id, id2label | |
def load_model(num_labels, label2id, id2label): | |
model = AutoModelForAudioClassification.from_pretrained( | |
MODEL, | |
num_labels=num_labels, | |
label2id=label2id, | |
id2label=id2label | |
) | |
return model | |
def model_params(dataset_path): | |
login(token, add_to_git_credential=True) | |
seed_everything() | |
encoded_dataset, label2id, id2label = load_and_prepare_dataset(dataset_path) | |
model = load_model(len(id2label), label2id, id2label) | |
return model, encoded_dataset, id2label | |
def compute_metrics(eval_pred): | |
predictions = np.argmax(eval_pred.predictions, axis=1) | |
references = eval_pred.label_ids | |
return { | |
"accuracy": np.mean(predictions == references), | |
} | |
def model_training(training_args, output_dir, dataset_path): | |
model, encoded_dataset, _ = model_params(dataset_path) | |
tensorboard_callback = TensorBoardCallback() | |
early_stopping_callback = EarlyStoppingCallback(early_stopping_patience=3) | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
compute_metrics=compute_metrics, | |
train_dataset=encoded_dataset["train"], | |
eval_dataset=encoded_dataset["test"], | |
callbacks=[tensorboard_callback, early_stopping_callback] | |
) | |
torch.cuda.empty_cache() # liberar memoria de la GPU | |
trainer.train() # se pueden modificar los parámetros para continuar el train | |
trainer.push_to_hub(token=token) # Subir modelo a mi cuenta. Necesario para hacer la predicción, no sé por qué. | |
trainer.save_model(output_dir) # para subir el modelo a Hugging Face. Necesario para hacer la predicción, no sé por qué. | |
os.makedirs(output_dir, exist_ok=True) # Crear carpeta con el modelo si no existe | |
upload_folder(repo_id=f"A-POR-LOS-8000/{output_dir}",folder_path=output_dir, token=token) # subir modelo a organización | |
def load_config(model_name): | |
with open(config_file, 'r') as f: | |
config = json.load(f) | |
model_config = config[model_name] | |
training_args = TrainingArguments(**model_config["training_args"]) | |
model_config["training_args"] = training_args | |
return model_config | |
if __name__ == "__main__": | |
config = load_config(clasificador) # PARA CAMBIAR MODELOS | |
# config = load_config(monitor) # PARA CAMBI | |
training_args = config["training_args"] | |
output_dir = config["output_dir"] | |
dataset_path = config["dataset_path"] | |
model_training(training_args, output_dir, dataset_path) | |