Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
from transformers import pipeline | |
import numpy as np | |
from model import SAMPLING_RATE | |
token = os.getenv("HF_TOKEN") | |
modelo = "mixed-data" | |
# modelo = "cry-detector" | |
pipe = pipeline("audio-classification", model=f"A-POR-LOS-8000/distilhubert-finetuned-{modelo}", use_auth_token=token) | |
def transcribe(audio): | |
_, y = audio | |
y = y.astype(np.float32) # con torch.float32 da error | |
y /= np.max(np.abs(y)) | |
results = pipe({"sampling_rate": SAMPLING_RATE, "raw": y}) | |
top_result = results[0] # Get the top result (most likely classification) | |
label = top_result["label"] # Extract the label from the top result | |
return label | |
demo = gr.Interface( | |
transcribe, | |
gr.Audio( | |
min_length=1.0, | |
max_length=10.0, | |
format="wav", | |
), | |
"text", | |
) | |
demo.launch() | |