RAGArch / app.py
AI-ANK's picture
Update app.py
d998065 verified
import os, tempfile, qdrant_client
import streamlit as st
from llama_index.llms import OpenAI, Gemini, Cohere
from llama_index.embeddings import HuggingFaceEmbedding
from llama_index import SimpleDirectoryReader, ServiceContext, VectorStoreIndex, StorageContext
from llama_index.node_parser import SentenceSplitter, CodeSplitter, SemanticSplitterNodeParser, TokenTextSplitter
from llama_index.node_parser.file import HTMLNodeParser, JSONNodeParser, MarkdownNodeParser
from llama_index.vector_stores import QdrantVectorStore, PineconeVectorStore
from pinecone import Pinecone
def reset_pipeline_generated():
if 'pipeline_generated' in st.session_state:
st.session_state['pipeline_generated'] = False
def upload_file():
file = st.file_uploader("Upload a file", on_change=reset_pipeline_generated)
if file is not None:
file_path = save_uploaded_file(file)
if file_path:
loaded_file = SimpleDirectoryReader(input_files=[file_path]).load_data()
print(f"Total documents: {len(loaded_file)}")
st.success(f"File uploaded successfully. Total documents loaded: {len(loaded_file)}")
#print(loaded_file)
return loaded_file
return None
@st.cache_data
def save_uploaded_file(uploaded_file):
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp_file:
tmp_file.write(uploaded_file.getvalue())
return tmp_file.name
except Exception as e:
st.error(f"Error saving file: {e}")
return None
def select_llm():
st.header("Choose LLM")
llm_choice = st.selectbox("Select LLM", ["Gemini", "Cohere", "GPT-3.5", "GPT-4"], on_change=reset_pipeline_generated)
if llm_choice == "GPT-3.5":
llm = OpenAI(temperature=0.1, model="gpt-3.5-turbo-1106")
st.write(f"{llm_choice} selected")
elif llm_choice == "GPT-4":
llm = OpenAI(temperature=0.1, model="gpt-4-1106-preview")
st.write(f"{llm_choice} selected")
elif llm_choice == "Gemini":
llm = Gemini(model="models/gemini-pro")
st.write(f"{llm_choice} selected")
elif llm_choice == "Cohere":
llm = Cohere(model="command", api_key=os.environ['COHERE_API_TOKEN'])
st.write(f"{llm_choice} selected")
return llm, llm_choice
def select_embedding_model():
st.header("Choose Embedding Model")
col1, col2 = st.columns([2,1])
with col2:
st.markdown("""
[Embedding Models Leaderboard](https://huggingface.co/spaces/mteb/leaderboard)
""")
model_names = [
"BAAI/bge-small-en-v1.5",
"WhereIsAI/UAE-Large-V1",
"BAAI/bge-large-en-v1.5",
"khoa-klaytn/bge-small-en-v1.5-angle",
"BAAI/bge-base-en-v1.5",
"llmrails/ember-v1",
"jamesgpt1/sf_model_e5",
"thenlper/gte-large",
"infgrad/stella-base-en-v2",
"thenlper/gte-base"
]
selected_model = st.selectbox("Select Embedding Model", model_names, on_change=reset_pipeline_generated)
with st.spinner("Please wait") as status:
embed_model = HuggingFaceEmbedding(model_name=selected_model)
st.session_state['embed_model'] = embed_model
st.markdown(F"Embedding Model: {embed_model.model_name}")
st.markdown(F"Embed Batch Size: {embed_model.embed_batch_size}")
st.markdown(F"Embed Batch Size: {embed_model.max_length}")
return embed_model, selected_model
def select_node_parser():
st.header("Choose Node Parser")
col1, col2 = st.columns([4,1])
with col2:
st.markdown("""
[More Information](https://docs.llamaindex.ai/en/stable/module_guides/loading/node_parsers/root.html)
""")
parser_types = ["SentenceSplitter", "CodeSplitter", "SemanticSplitterNodeParser",
"TokenTextSplitter", "HTMLNodeParser", "JSONNodeParser", "MarkdownNodeParser"]
parser_type = st.selectbox("Select Node Parser", parser_types, on_change=reset_pipeline_generated)
parser_params = {}
if parser_type == "HTMLNodeParser":
tags = st.text_input("Enter tags separated by commas", "p, h1")
tag_list = tags.split(',')
parser = HTMLNodeParser(tags=tag_list)
parser_params = {'tags': tag_list}
elif parser_type == "JSONNodeParser":
parser = JSONNodeParser()
elif parser_type == "MarkdownNodeParser":
parser = MarkdownNodeParser()
elif parser_type == "CodeSplitter":
language = st.text_input("Language", "python")
chunk_lines = st.number_input("Chunk Lines", min_value=1, value=40)
chunk_lines_overlap = st.number_input("Chunk Lines Overlap", min_value=0, value=15)
max_chars = st.number_input("Max Chars", min_value=1, value=1500)
parser = CodeSplitter(language=language, chunk_lines=chunk_lines, chunk_lines_overlap=chunk_lines_overlap, max_chars=max_chars)
parser_params = {'language': language, 'chunk_lines': chunk_lines, 'chunk_lines_overlap': chunk_lines_overlap, 'max_chars': max_chars}
elif parser_type == "SentenceSplitter":
chunk_size = st.number_input("Chunk Size", min_value=1, value=1024)
chunk_overlap = st.number_input("Chunk Overlap", min_value=0, value=20)
parser = SentenceSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
parser_params = {'chunk_size': chunk_size, 'chunk_overlap': chunk_overlap}
elif parser_type == "SemanticSplitterNodeParser":
if 'embed_model' not in st.session_state:
st.warning("Please select an embedding model first.")
return None, None
embed_model = st.session_state['embed_model']
buffer_size = st.number_input("Buffer Size", min_value=1, value=1)
breakpoint_percentile_threshold = st.number_input("Breakpoint Percentile Threshold", min_value=0, max_value=100, value=95)
parser = SemanticSplitterNodeParser(buffer_size=buffer_size, breakpoint_percentile_threshold=breakpoint_percentile_threshold, embed_model=embed_model)
parser_params = {'buffer_size': buffer_size, 'breakpoint_percentile_threshold': breakpoint_percentile_threshold}
elif parser_type == "TokenTextSplitter":
chunk_size = st.number_input("Chunk Size", min_value=1, value=1024)
chunk_overlap = st.number_input("Chunk Overlap", min_value=0, value=20)
parser = TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
parser_params = {'chunk_size': chunk_size, 'chunk_overlap': chunk_overlap}
# Save the parser type and parameters to the session state
st.session_state['node_parser_type'] = parser_type
st.session_state['node_parser_params'] = parser_params
return parser, parser_type
def select_response_synthesis_method():
st.header("Choose Response Synthesis Method")
col1, col2 = st.columns([4,1])
with col2:
st.markdown("""
[More Information](https://docs.llamaindex.ai/en/stable/module_guides/querying/response_synthesizers/response_synthesizers.html)
""")
response_modes = [
"refine",
"tree_summarize",
"compact",
"simple_summarize",
"accumulate",
"compact_accumulate"
]
selected_mode = st.selectbox("Select Response Mode", response_modes, on_change=reset_pipeline_generated)
response_mode = selected_mode
return response_mode, selected_mode
def select_vector_store():
st.header("Choose Vector Store")
vector_stores = ["Simple", "Pinecone", "Qdrant"]
selected_store = st.selectbox("Select Vector Store", vector_stores, on_change=reset_pipeline_generated)
vector_store = None
if selected_store == "Pinecone":
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
index = pc.Index("test")
vector_store = PineconeVectorStore(pinecone_index=index)
elif selected_store == "Qdrant":
client = qdrant_client.QdrantClient(location=":memory:")
vector_store = QdrantVectorStore(client=client, collection_name="sampledata")
st.write(selected_store)
return vector_store, selected_store
def generate_rag_pipeline(file, llm, embed_model, node_parser, response_mode, vector_store):
if vector_store is not None:
# Set storage context if vector_store is not None
storage_context = StorageContext.from_defaults(vector_store=vector_store)
else:
storage_context = None
# Create the service context
service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model, node_parser=node_parser)
# Create the vector index
vector_index = VectorStoreIndex.from_documents(documents=file, storage_context=storage_context, service_context=service_context, show_progress=True)
if storage_context:
vector_index.storage_context.persist(persist_dir="persist_dir")
# Create the query engine
query_engine = vector_index.as_query_engine(
response_mode=response_mode,
verbose=True,
)
return query_engine
def send_query():
query = st.session_state['query']
response = f"Response for the query: {query}"
st.markdown(response)
def generate_code_snippet(llm_choice, embed_model_choice, node_parser_choice, response_mode, vector_store_choice):
node_parser_params = st.session_state.get('node_parser_params', {})
print(node_parser_params)
code_snippet = "from llama_index.llms import OpenAI, Gemini, Cohere\n"
code_snippet += "from llama_index.embeddings import HuggingFaceEmbedding\n"
code_snippet += "from llama_index import ServiceContext, VectorStoreIndex, StorageContext\n"
code_snippet += "from llama_index.node_parser import SentenceSplitter, CodeSplitter, SemanticSplitterNodeParser, TokenTextSplitter\n"
code_snippet += "from llama_index.node_parser.file import HTMLNodeParser, JSONNodeParser, MarkdownNodeParser\n"
code_snippet += "from llama_index.vector_stores import MilvusVectorStore, QdrantVectorStore\n"
code_snippet += "import qdrant_client\n\n"
# LLM initialization
if llm_choice == "GPT-3.5":
code_snippet += "llm = OpenAI(temperature=0.1, model='gpt-3.5-turbo-1106')\n"
elif llm_choice == "GPT-4":
code_snippet += "llm = OpenAI(temperature=0.1, model='gpt-4-1106-preview')\n"
elif llm_choice == "Gemini":
code_snippet += "llm = Gemini(model='models/gemini-pro')\n"
elif llm_choice == "Cohere":
code_snippet += "llm = Cohere(model='command', api_key='<YOUR_API_KEY>') # Replace <YOUR_API_KEY> with your actual API key\n"
# Embedding model initialization
code_snippet += f"embed_model = HuggingFaceEmbedding(model_name='{embed_model_choice}')\n\n"
# Node parser initialization
node_parsers = {
"SentenceSplitter": f"SentenceSplitter(chunk_size={node_parser_params.get('chunk_size', 1024)}, chunk_overlap={node_parser_params.get('chunk_overlap', 20)})",
"CodeSplitter": f"CodeSplitter(language={node_parser_params.get('language', 'python')}, chunk_lines={node_parser_params.get('chunk_lines', 40)}, chunk_lines_overlap={node_parser_params.get('chunk_lines_overlap', 15)}, max_chars={node_parser_params.get('max_chars', 1500)})",
"SemanticSplitterNodeParser": f"SemanticSplitterNodeParser(buffer_size={node_parser_params.get('buffer_size', 1)}, breakpoint_percentile_threshold={node_parser_params.get('breakpoint_percentile_threshold', 95)}, embed_model=embed_model)",
"TokenTextSplitter": f"TokenTextSplitter(chunk_size={node_parser_params.get('chunk_size', 1024)}, chunk_overlap={node_parser_params.get('chunk_overlap', 20)})",
"HTMLNodeParser": f"HTMLNodeParser(tags={node_parser_params.get('tags', ['p', 'h1'])})",
"JSONNodeParser": "JSONNodeParser()",
"MarkdownNodeParser": "MarkdownNodeParser()"
}
code_snippet += f"node_parser = {node_parsers[node_parser_choice]}\n\n"
# Response mode
code_snippet += f"response_mode = '{response_mode}'\n\n"
# Vector store initialization
if vector_store_choice == "Pinecone":
code_snippet += "pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])\n"
code_snippet += "index = pc.Index('test')\n"
code_snippet += "vector_store = PineconeVectorStore(pinecone_index=index)\n"
elif vector_store_choice == "Qdrant":
code_snippet += "client = qdrant_client.QdrantClient(location=':memory:')\n"
code_snippet += "vector_store = QdrantVectorStore(client=client, collection_name='sampledata')\n"
elif vector_store_choice == "Simple":
code_snippet += "vector_store = None # Simple in-memory vector store selected\n"
code_snippet += "\n# Finalizing the RAG pipeline setup\n"
code_snippet += "if vector_store is not None:\n"
code_snippet += " storage_context = StorageContext.from_defaults(vector_store=vector_store)\n"
code_snippet += "else:\n"
code_snippet += " storage_context = None\n\n"
code_snippet += "service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model, node_parser=node_parser)\n\n"
code_snippet += "_file = 'path_to_your_file' # Replace with the path to your file\n"
code_snippet += "vector_index = VectorStoreIndex.from_documents(documents=_file, storage_context=storage_context, service_context=service_context, show_progress=True)\n"
code_snippet += "if storage_context:\n"
code_snippet += " vector_index.storage_context.persist(persist_dir='persist_dir')\n\n"
code_snippet += "query_engine = vector_index.as_query_engine(response_mode=response_mode, verbose=True)\n"
return code_snippet
def main():
st.title("RAGArch: RAG Pipeline Tester and Code Generator")
st.markdown("""
- **Configure and Test RAG Pipelines with Custom Parameters**
- **Automatically Generate Plug-and-Play Implementation Code Based on Your Configuration**
""")
# Sidebar Intro
st.sidebar.markdown('## App Created By')
st.sidebar.markdown("""
Harshad Suryawanshi:
[Linkedin](https://www.linkedin.com/in/harshadsuryawanshi/), [Medium](https://harshadsuryawanshi.medium.com/), [X](https://twitter.com/HarshadSurya1c)
""")
st.sidebar.markdown('## Other Projects')
st.sidebar.markdown("""
- [C3 Voice Assistant - Making LLM/RAG Apps Accessible to Everyone](https://www.linkedin.com/posts/harshadsuryawanshi_ai-llamaindex-gpt3-activity-7149796976442740736-1lXj?utm_source=share&utm_medium=member_desktop)
- [NA2SQL - Extracting Insights from Databases using Natural Language](https://www.linkedin.com/posts/harshadsuryawanshi_ai-llamaindex-streamlit-activity-7141801596006440960-mCjT)
- [Pokemon Go! Inspired AInimal GO! - Multimodal RAG App](https://www.linkedin.com/posts/harshadsuryawanshi_llamaindex-ai-deeplearning-activity-7134632983495327744-M7yy)
- [Building My Own GPT4-V with PaLM and Kosmos](https://lnkd.in/dawgKZBP)
- [AI Equity Research Analyst](https://ai-eqty-rsrch-anlyst.streamlit.app/)
- [Recasting "The Office" Scene](https://blackmirroroffice.streamlit.app/)
- [Story Generator](https://appstorycombined-agaf9j4ceit.streamlit.app/)
""")
st.sidebar.markdown('## Disclaimer')
st.sidebar.markdown("""This application is for demonstration purposes only and may not cover all aspects of real-world data complexities. Please use it as a guide and not as a definitive source for decision-making.""")
# Upload file
file = upload_file()
# Select RAG components
llm, llm_choice = select_llm()
embed_model, embed_model_choice = select_embedding_model()
node_parser, node_parser_choice = select_node_parser()
# Process nodes only if a file has been uploaded
if file is not None:
if node_parser:
nodes = node_parser.get_nodes_from_documents(file)
st.write("First node: ")
st.code(f"{nodes[0].text}")
response_mode, response_mode_choice = select_response_synthesis_method()
vector_store, vector_store_choice = select_vector_store()
# Generate RAG Pipeline Button
if file is not None:
if st.button("Generate RAG Pipeline"):
with st.spinner():
query_engine = generate_rag_pipeline(file, llm, embed_model, node_parser, response_mode, vector_store)
st.session_state['query_engine'] = query_engine
st.session_state['pipeline_generated'] = True
st.success("RAG Pipeline Generated Successfully!")
elif file is None:
st.error('Please upload a file')
# After generating the RAG pipeline
if st.session_state.get('pipeline_generated', False):
query = st.text_input("Enter your query", key='query')
if st.button("Send"):
if 'query_engine' in st.session_state:
response = st.session_state['query_engine'].query(query)
st.markdown(response, unsafe_allow_html=True)
else:
st.error("Query engine not initialized. Please generate the RAG pipeline first.")
if file and st.button("Generate Code Snippet"):
code_snippet = generate_code_snippet(llm_choice, embed_model_choice, node_parser_choice, response_mode_choice, vector_store_choice)
st.code(code_snippet, language='python')
if __name__ == "__main__":
main()