EdwardoSunny's picture
finished
85ab89d
raw
history blame
9.11 kB
import logging
import random
import torch
from torch.cuda.amp import autocast as autocast
import torch.nn as nn
import sys
from minigpt4.common.registry import registry
from minigpt4.models.blip2 import Blip2Base, disabled_train
from minigpt4.models.modeling_llama import LlamaForCausalLM
from transformers import LlamaTokenizer
from transformers import AutoModelForCausalLM, AutoTokenizer
@registry.register_model("mini_gpt4")
class MiniGPT4(Blip2Base):
"""
BLIP2 GPT-LLAMA model.
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"pretrain_vicuna": "../configs/minigpt4.yaml", # "configs/models/minigpt4.yaml",
}
def __init__(
self,
llama_model="",
prompt_template="",
max_txt_len=32,
end_sym='\n',
low_resource=False, # use 8 bit and put vit in cpu
device_8bit=0, # the device of 8bit model should be set when loading and cannot be changed anymore.
):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.low_resource = low_resource
print('Loading LLAMA')
self.llama_tokenizer = AutoTokenizer.from_pretrained(llama_model, use_fast=False)
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
if self.low_resource:
self.llama_model = AutoModelForCausalLM.from_pretrained(
llama_model,
torch_dtype=torch.float16,
load_in_8bit=True,
device_map={'': device_8bit}
)
else:
self.llama_model = AutoModelForCausalLM.from_pretrained(
llama_model,
torch_dtype=torch.float16,
)
for name, param in self.llama_model.named_parameters():
param.requires_grad = False
print('Loading LLAMA Done')
self.esm_struct_llama_proj = nn.Linear(
512, self.llama_model.config.hidden_size
)
self.esm_seq_llama_proj = nn.Linear(
# 1280, self.llama_model.config.hidden_size
2560, self.llama_model.config.hidden_size
)
self.max_txt_len = max_txt_len
self.end_sym = end_sym
self.prompt_template = prompt_template
def encode_protein_struct(self, protein_struct_encode):
device = protein_struct_encode.device
protein_embeds = protein_struct_encode.to(device)
# input llama shape: [B, 32, 5120]
inputs_llama = self.esm_struct_llama_proj(protein_embeds.squeeze(dim=2))
# atts_llama shape: [B, 32]
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(device)
return inputs_llama, atts_llama
def encode_protein_seq(self, protein_seq_encode):
device = protein_seq_encode.device
protein_embeds = protein_seq_encode.to(device)
# input llama is of shape [B, 32, 5120]
inputs_llama = self.esm_seq_llama_proj(protein_embeds.squeeze(dim=2))
# atts_llama is of shape [B, 32]
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(device)
return inputs_llama, atts_llama
def prompt_wrap(self, img_embeds, atts_img, prompt):
if prompt:
batch_size = img_embeds.shape[0]
p_before, p_after = prompt.split('<proteinHere>')
p_before_tokens = self.llama_tokenizer(
p_before, return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
p_after_tokens = self.llama_tokenizer(
p_after, return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
p_before_embeds = self.llama_model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1)
p_after_embeds = self.llama_model.model.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1)
# print(p_before_embeds.shape, img_embeds.shape, p_after_embeds.shape)
wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds, p_after_embeds], dim=1)
wrapped_atts_img = atts_img[:, :1].expand(-1, wrapped_img_embeds.shape[1])
return wrapped_img_embeds, wrapped_atts_img
else:
return img_embeds, atts_img
def forward(self, samples):
# structure
pdb_encode = samples["pdb_encoder_out"]
pdb_device = pdb_encode.device
pdb_encode = pdb_encode[0]
pdb_encode = pdb_encode.permute(1, 0, 2) # Reshape [X, 1, Y] -> [1, X, Y]
pdb_embeds, atts_pdb = self.encode_protein_struct(pdb_encode)
# sequence
seq_encode = samples["seq_encoder_out"]
seq_device = seq_encode.device
seq_encode = seq_encode[0]
seq_embeds, atts_seq = self.encode_protein_seq(seq_encode)
img_embeds = torch.cat([pdb_embeds, seq_embeds], dim=1)
atts_img = torch.cat([atts_pdb, atts_seq], dim=1)
# skips over this branch for stage 1 and 2
if hasattr(samples, 'question_split'): # VQA dataset
print('VQA Batch')
vqa_prompt = '###Human: <protein><proteinHere></protein> '
img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img, vqa_prompt)
# TO check: print out when needed (run stage 2 and print out some stuff to see which branch it goes to)
elif "q_input" in samples: # prompt path (alignment.txt provided) then takes this path to random choose form the list
prompt = self.prompt_template.format("<protein><proteinHere></protein> " + samples["q_input"][0])
img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img, prompt)
# stage 1 directly skip the branches above
self.llama_tokenizer.padding_side = "right"
text = []
if "q_input" in samples:
text = [t + self.end_sym for t in samples["a_input"]]
else:
text = [t + self.end_sym for t in samples["text_input"]]
to_regress_tokens = self.llama_tokenizer(
text,
return_tensors="pt",
padding="longest",
truncation=True,
max_length=self.max_txt_len,
add_special_tokens=False
).to(pdb_device)
targets = to_regress_tokens.input_ids.masked_fill(
to_regress_tokens.input_ids == self.llama_tokenizer.pad_token_id, -100
)
empty_targets = (
torch.ones([atts_img.shape[0], atts_img.shape[1]+1],
dtype=torch.long).to(pdb_device).fill_(-100) # plus one for bos
)
targets = torch.cat([empty_targets, targets], dim=1)
batch_size = img_embeds.shape[0]
bos = torch.ones([batch_size, 1],
dtype=to_regress_tokens.input_ids.dtype,
device=to_regress_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id
bos_embeds = self.llama_model.model.embed_tokens(bos)
atts_bos = atts_img[:, :1]
to_regress_embeds = self.llama_model.model.embed_tokens(to_regress_tokens.input_ids)
inputs_embeds = torch.cat([bos_embeds, img_embeds, to_regress_embeds], dim=1)
attention_mask = torch.cat([atts_bos, atts_img, to_regress_tokens.attention_mask], dim=1)
with self.maybe_autocast():
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
return {"loss": loss}
@classmethod
def from_config(cls, cfg):
vit_model = cfg.get("vit_model", "eva_clip_g")
q_former_model = cfg.get("q_former_model", "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth")
img_size = cfg.get("image_size")
num_query_token = cfg.get("num_query_token")
llama_model = cfg.get("llama_model")
drop_path_rate = cfg.get("drop_path_rate", 0)
use_grad_checkpoint = cfg.get("use_grad_checkpoint", False)
vit_precision = cfg.get("vit_precision", "fp16")
freeze_protein_encoder = cfg.get("freeze_protein_encoder", True)
freeze_qformer = cfg.get("freeze_qformer", True)
low_resource = cfg.get("low_resource", False)
device_8bit = cfg.get("device_8bit", 0)
prompt_template = cfg.get("prompt_template", "")
max_txt_len = cfg.get("max_txt_len", 32)
end_sym = cfg.get("end_sym", '\n')
model = cls(
llama_model=llama_model,
prompt_template=prompt_template,
max_txt_len=max_txt_len,
end_sym=end_sym,
low_resource=low_resource,
device_8bit=device_8bit,
)
ckpt_path = cfg.get("ckpt", "") # load weights of MiniGPT-4
if ckpt_path:
print("Load BLIP2-LLM Checkpoint: {}".format(ckpt_path))
ckpt = torch.load(ckpt_path, map_location="cpu")
msg = model.load_state_dict(ckpt['model'], strict=False)
return model